Langchain-Chatchat/configs/model_config.py

280 lines
11 KiB
Python
Raw Normal View History

2023-04-13 23:01:52 +08:00
import torch.cuda
import torch.backends
2023-04-25 20:14:33 +08:00
import os
import logging
import uuid
LOG_FORMAT = "%(levelname) -5s %(asctime)s" "-1d: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
2023-04-13 23:01:52 +08:00
2023-06-12 00:10:47 +08:00
# 在以下字典中修改属性值以指定本地embedding模型存储位置
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
# 此处请写绝对路径
2023-04-13 23:01:52 +08:00
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
2023-04-27 07:40:57 +08:00
"text2vec-base": "shibing624/text2vec-base-chinese",
2023-04-13 23:01:52 +08:00
"text2vec": "GanymedeNil/text2vec-large-chinese",
"m3e-small": "moka-ai/m3e-small",
"m3e-base": "moka-ai/m3e-base",
2023-04-13 23:01:52 +08:00
}
# Embedding model name
2023-04-13 23:20:45 +08:00
EMBEDDING_MODEL = "text2vec"
2023-04-13 23:01:52 +08:00
# Embedding running device
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# supported LLM models
2023-05-22 00:15:29 +08:00
# llm_model_dict 处理了loader的一些预设行为如加载位置模型名称模型处理器实例
2023-06-12 00:10:47 +08:00
# 在以下字典中修改属性值,以指定本地 LLM 模型存储位置
# 如将 "chatglm-6b" 的 "local_model_path" 由 None 修改为 "User/Downloads/chatglm-6b"
# 此处请写绝对路径
2023-04-13 23:01:52 +08:00
llm_model_dict = {
"chatglm-6b-int4-qe": {
"name": "chatglm-6b-int4-qe",
2023-05-19 23:12:39 +08:00
"pretrained_model_name": "THUDM/chatglm-6b-int4-qe",
"local_model_path": None,
"provides": "ChatGLMLLMChain"
},
"chatglm-6b-int4": {
"name": "chatglm-6b-int4",
2023-05-19 23:12:39 +08:00
"pretrained_model_name": "THUDM/chatglm-6b-int4",
"local_model_path": None,
"provides": "ChatGLMLLMChain"
},
2023-05-19 23:16:39 +08:00
"chatglm-6b-int8": {
"name": "chatglm-6b-int8",
"pretrained_model_name": "THUDM/chatglm-6b-int8",
"local_model_path": None,
"provides": "ChatGLMLLMChain"
2023-05-19 23:16:39 +08:00
},
"chatglm-6b": {
"name": "chatglm-6b",
2023-05-19 23:16:39 +08:00
"pretrained_model_name": "THUDM/chatglm-6b",
2023-06-12 00:10:47 +08:00
"local_model_path": None,
"provides": "ChatGLMLLMChain"
},
2023-06-25 17:04:16 +08:00
"chatglm2-6b": {
"name": "chatglm2-6b",
"pretrained_model_name": "THUDM/chatglm2-6b",
"local_model_path": None,
"provides": "ChatGLMLLMChain"
2023-06-25 17:04:16 +08:00
},
"chatglm2-6b-int4": {
"name": "chatglm2-6b-int4",
"pretrained_model_name": "THUDM/chatglm2-6b-int4",
"local_model_path": None,
"provides": "ChatGLMLLMChain"
},
"chatglm2-6b-int8": {
"name": "chatglm2-6b-int8",
"pretrained_model_name": "THUDM/chatglm2-6b-int8",
"local_model_path": None,
"provides": "ChatGLMLLMChain"
},
"chatyuan": {
"name": "chatyuan",
2023-05-19 23:12:39 +08:00
"pretrained_model_name": "ClueAI/ChatYuan-large-v2",
"local_model_path": None,
"provides": "MOSSLLMChain"
},
2023-05-19 23:16:39 +08:00
"moss": {
"name": "moss",
"pretrained_model_name": "fnlp/moss-moon-003-sft",
2023-05-19 23:12:39 +08:00
"local_model_path": None,
"provides": "MOSSLLMChain"
},
2023-07-13 21:22:35 +08:00
"moss-int4": {
"name": "moss",
"pretrained_model_name": "fnlp/moss-moon-003-sft-int4",
"local_model_path": None,
"provides": "MOSSLLM"
},
"vicuna-13b-hf": {
"name": "vicuna-13b-hf",
"pretrained_model_name": "vicuna-13b-hf",
2023-06-13 18:36:07 +08:00
"local_model_path": None,
"provides": "LLamaLLMChain"
},
"vicuna-7b-hf": {
"name": "vicuna-13b-hf",
"pretrained_model_name": "vicuna-13b-hf",
"local_model_path": None,
"provides": "LLamaLLMChain"
2023-07-11 20:19:50 +08:00
},
2023-07-11 19:36:50 +08:00
# 直接调用返回requests.exceptions.ConnectionError错误需要通过huggingface_hub包里的snapshot_download函数
# 下载模型如果snapshot_download还是返回网络错误多试几次一般是可以的
# 如果仍然不行,则应该是网络加了防火墙(在服务器上这种情况比较常见),基本只能从别的设备上下载,
# 然后转移到目标设备了.
2023-07-11 20:19:50 +08:00
"bloomz-7b1": {
"name": "bloomz-7b1",
2023-07-11 19:36:50 +08:00
"pretrained_model_name": "bigscience/bloomz-7b1",
"local_model_path": None,
"provides": "MOSSLLMChain"
2023-07-11 19:36:50 +08:00
},
# 实测加载bigscience/bloom-3b需要170秒左右暂不清楚为什么这么慢
# 应与它要加载专有token有关
2023-07-11 20:19:50 +08:00
"bloom-3b": {
"name": "bloom-3b",
2023-07-11 19:36:50 +08:00
"pretrained_model_name": "bigscience/bloom-3b",
"local_model_path": None,
"provides": "MOSSLLMChain"
2023-07-11 19:36:50 +08:00
2023-07-11 20:19:50 +08:00
},
"baichuan-7b": {
"name": "baichuan-7b",
"pretrained_model_name": "baichuan-inc/baichuan-7B",
"local_model_path": None,
"provides": "MOSSLLMChain"
2023-07-11 20:19:50 +08:00
},
2023-07-11 19:36:50 +08:00
# llama-cpp模型的兼容性问题参考https://github.com/abetlen/llama-cpp-python/issues/204
2023-07-11 20:19:50 +08:00
"ggml-vicuna-13b-1.1-q5": {
2023-07-11 19:36:50 +08:00
"name": "ggml-vicuna-13b-1.1-q5",
"pretrained_model_name": "lmsys/vicuna-13b-delta-v1.1",
# 这里需要下载好模型的路径,如果下载模型是默认路径则它会下载到用户工作区的
# /.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/
# 还有就是由于本项目加载模型的方式设置的比较严格,下载完成后仍需手动修改模型的文件名
# 将其设置为与Huggface Hub一致的文件名
# 此外不同时期的ggml格式并不兼容因此不同时期的ggml需要安装不同的llama-cpp-python库且实测pip install 不好使
# 需要手动从https://github.com/abetlen/llama-cpp-python/releases/tag/下载对应的wheel安装
# 实测v0.1.63与本模型的vicuna/ggml-vicuna-13b-1.1/ggml-vic13b-q5_1.bin可以兼容
2023-07-11 20:19:50 +08:00
"local_model_path": f'''{"/".join(os.path.abspath(__file__).split("/")[:3])}/.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/blobs/''',
"provides": "LLamaLLMChain"
},
2023-05-31 22:50:35 +08:00
# 通过 fastchat 调用的模型请参考如下格式
"fastchat-chatglm-6b": {
"name": "chatglm-6b", # "name"修改为fastchat服务中的"model_name"
"pretrained_model_name": "chatglm-6b",
"local_model_path": None,
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时需保证"provides"为"FastChatOpenAILLMChain"
2023-07-11 19:36:50 +08:00
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
2023-05-31 22:11:28 +08:00
},
2023-06-25 17:04:16 +08:00
"fastchat-chatglm2-6b": {
"name": "chatglm2-6b", # "name"修改为fastchat服务中的"model_name"
"pretrained_model_name": "chatglm2-6b",
"local_model_path": None,
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时需保证"provides"为"FastChatOpenAILLMChain"
2023-06-25 17:04:16 +08:00
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
},
2023-05-31 22:11:28 +08:00
2023-05-31 22:50:35 +08:00
# 通过 fastchat 调用的模型请参考如下格式
"fastchat-vicuna-13b-hf": {
"name": "vicuna-13b-hf", # "name"修改为fastchat服务中的"model_name"
2023-05-31 22:11:28 +08:00
"pretrained_model_name": "vicuna-13b-hf",
"local_model_path": None,
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时需保证"provides"为"FastChatOpenAILLMChain"
2023-07-11 19:36:50 +08:00
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
2023-05-31 22:11:28 +08:00
},
2023-07-11 23:40:49 +08:00
# 调用chatgpt时如果报出 urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
# Max retries exceeded with url: /v1/chat/completions
# 则需要将urllib3版本修改为1.25.11
# 如果报出raise NewConnectionError(
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
2023-07-11 23:40:49 +08:00
# Failed to establish a new connection: [WinError 10060]
# 则是因为内地和香港的IP都被OPENAI封了需要挂切换为日本、新加坡等地
2023-07-11 20:19:50 +08:00
"openai-chatgpt-3.5": {
2023-07-11 19:36:50 +08:00
"name": "gpt-3.5-turbo",
"pretrained_model_name": "gpt-3.5-turbo",
"provides": "FastChatOpenAILLMChain",
2023-07-11 19:36:50 +08:00
"local_model_path": None,
"api_base_url": "https://api.openapi.com/v1",
"api_key": ""
},
2023-04-13 23:01:52 +08:00
}
# LLM 名称
2023-04-21 21:22:25 +08:00
LLM_MODEL = "chatglm-6b"
# 量化加载8bit 模型
LOAD_IN_8BIT = False
# Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.
BF16 = False
# 本地lora存放的位置
LORA_DIR = "loras/"
2023-04-13 23:01:52 +08:00
# LLM lora path默认为空如果有请直接指定文件夹路径
LLM_LORA_PATH = ""
USE_LORA = True if LLM_LORA_PATH else False
# LLM streaming reponse
STREAMING = True
2023-04-15 14:43:12 +08:00
# Use p-tuning-v2 PrefixEncoder
USE_PTUNING_V2 = False
2023-07-13 22:10:54 +08:00
PTUNING_DIR='./ptuing-v2'
2023-07-13 22:21:00 +08:00
<<<<<<< HEAD
=======
2023-04-15 14:43:12 +08:00
2023-07-13 22:21:00 +08:00
>>>>>>> f68d347c25b4bdd07f293c65a6e44a673a11f614
2023-04-13 23:01:52 +08:00
# LLM running device
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# 知识库默认存储路径
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
2023-04-19 23:02:47 +08:00
2023-04-26 23:20:08 +08:00
# 基于上下文的prompt模版请务必保留"{question}"和"{context}"
2023-05-02 00:28:09 +08:00
PROMPT_TEMPLATE = """已知信息:
{context}
2023-05-02 00:28:09 +08:00
根据上述已知信息简洁和专业的来回答用户的问题如果无法从中得到答案请说 根据已知信息无法回答该问题 没有提供足够的相关信息不允许在答案中添加编造成分答案请使用中文 问题是{question}"""
2023-04-28 00:02:42 +08:00
# 缓存知识库数量,如果是ChatGLM2,ChatGLM2-int4,ChatGLM2-int8模型若检索效果不好可以调成10
CACHED_VS_NUM = 1
2023-05-06 23:26:49 +08:00
# 文本分句长度
SENTENCE_SIZE = 100
2023-04-28 00:02:42 +08:00
# 匹配后单段上下文长度
2023-05-04 20:48:36 +08:00
CHUNK_SIZE = 250
# 传入LLM的历史记录长度
2023-05-04 20:48:36 +08:00
LLM_HISTORY_LEN = 3
# 知识库检索时返回的匹配内容条数
2023-05-04 20:48:36 +08:00
VECTOR_SEARCH_TOP_K = 5
2023-05-11 00:09:38 +08:00
# 知识检索内容相关度 Score, 数值范围约为0-1100如果为0则不生效经测试设置为小于500时匹配结果更精准
VECTOR_SEARCH_SCORE_THRESHOLD = 390
2023-05-10 17:18:20 +08:00
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
FLAG_USER_NAME = uuid.uuid4().hex
logger.info(f"""
loading model config
llm device: {LLM_DEVICE}
embedding device: {EMBEDDING_DEVICE}
dir: {os.path.dirname(os.path.dirname(__file__))}
flagging username: {FLAG_USER_NAME}
2023-05-10 17:18:20 +08:00
""")
# 是否开启跨域默认为False如果需要开启请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
2023-05-21 22:30:28 +08:00
# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
2023-05-21 22:30:28 +08:00
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key
# 此外如果是在服务器上报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙需要联系管理员加白名单如果公司的服务器的话就别想了GG
BING_SUBSCRIPTION_KEY = ""
# 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断判断哪些文本为标题并在metadata中进行标记
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
ZH_TITLE_ENHANCE = False