Langchain-Chatchat/server/chat/chat.py

105 lines
5.4 KiB
Python
Raw Normal View History

2023-07-27 23:22:07 +08:00
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs import LLM_MODELS, TEMPERATURE
from server.utils import wrap_done, get_ChatOpenAI
from langchain.chains import LLMChain
2023-07-27 23:22:07 +08:00
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
import json
2023-08-08 23:54:51 +08:00
from langchain.prompts.chat import ChatPromptTemplate
from typing import List, Optional, Union
2023-08-08 23:54:51 +08:00
from server.chat.utils import History
from langchain.prompts import PromptTemplate
from server.utils import get_prompt_template
from server.memory.conversation_db_buffer_memory import ConversationBufferDBMemory
from server.db.repository import add_message_to_db
from server.callback_handler.conversation_callback_handler import ConversationCallbackHandler
2023-07-27 23:22:07 +08:00
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
conversation_id: str = Body("", description="对话框ID"),
history_len: int = Body(-1, description="从数据库中取历史消息的数量"),
history: Union[int, List[History]] = Body([],
description="历史对话,设为一个整数可以从数据库中读取历史消息",
examples=[[
{"role": "user",
"content": "我们来玩成语接龙,我先来,生龙活虎"},
{"role": "assistant", "content": "虎头虎脑"}]]
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
async def chat_iterator() -> AsyncIterable[str]:
nonlocal history, max_tokens
2023-07-27 23:22:07 +08:00
callback = AsyncIteratorCallbackHandler()
callbacks = [callback]
memory = None
if conversation_id:
message_id = add_message_to_db(chat_type="llm_chat", query=query, conversation_id=conversation_id)
# 负责保存llm response到message db
conversation_callback = ConversationCallbackHandler(conversation_id=conversation_id, message_id=message_id,
chat_type="llm_chat",
query=query)
callbacks.append(conversation_callback)
if isinstance(max_tokens, int) and max_tokens <= 0:
max_tokens = None
model = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=callbacks,
2023-07-27 23:22:07 +08:00
)
if history: # 优先使用前端传入的历史消息
history = [History.from_data(h) for h in history]
prompt_template = get_prompt_template("llm_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
[i.to_msg_template() for i in history] + [input_msg])
elif conversation_id and history_len > 0: # 前端要求从数据库取历史消息
# 使用memory 时必须 prompt 必须含有memory.memory_key 对应的变量
prompt = get_prompt_template("llm_chat", "with_history")
chat_prompt = PromptTemplate.from_template(prompt)
# 根据conversation_id 获取message 列表进而拼凑 memory
memory = ConversationBufferDBMemory(conversation_id=conversation_id,
llm=model,
message_limit=history_len)
else:
prompt_template = get_prompt_template("llm_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages([input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model, memory=memory)
2023-07-27 23:22:07 +08:00
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
2023-08-08 23:54:51 +08:00
chain.acall({"input": query}),
2023-07-27 23:22:07 +08:00
callback.done),
)
2023-08-14 10:35:47 +08:00
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps(
{"text": token, "message_id": message_id},
ensure_ascii=False)
2023-08-14 10:35:47 +08:00
else:
answer = ""
2023-08-14 10:35:47 +08:00
async for token in callback.aiter():
answer += token
yield json.dumps(
{"text": answer, "message_id": message_id},
ensure_ascii=False)
2023-08-14 10:35:47 +08:00
2023-07-27 23:22:07 +08:00
await task
2023-08-08 23:54:51 +08:00
return StreamingResponse(chat_iterator(), media_type="text/event-stream")