2023-04-13 23:01:52 +08:00
|
|
|
|
from configs.model_config import *
|
|
|
|
|
|
from chains.local_doc_qa import LocalDocQA
|
2023-04-16 23:38:25 +08:00
|
|
|
|
import os
|
|
|
|
|
|
import nltk
|
|
|
|
|
|
|
2023-05-04 20:48:36 +08:00
|
|
|
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
2023-04-13 23:01:52 +08:00
|
|
|
|
|
|
|
|
|
|
# Show reply with source text from input document
|
|
|
|
|
|
REPLY_WITH_SOURCE = True
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
local_doc_qa = LocalDocQA()
|
|
|
|
|
|
local_doc_qa.init_cfg(llm_model=LLM_MODEL,
|
|
|
|
|
|
embedding_model=EMBEDDING_MODEL,
|
|
|
|
|
|
embedding_device=EMBEDDING_DEVICE,
|
2023-04-14 00:06:45 +08:00
|
|
|
|
llm_history_len=LLM_HISTORY_LEN,
|
|
|
|
|
|
top_k=VECTOR_SEARCH_TOP_K)
|
2023-04-13 23:01:52 +08:00
|
|
|
|
vs_path = None
|
|
|
|
|
|
while not vs_path:
|
|
|
|
|
|
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
2023-05-06 19:24:58 +08:00
|
|
|
|
# 判断 filepath 是否为空,如果为空的话,重新让用户输入,防止用户误触回车
|
2023-05-06 18:34:37 +08:00
|
|
|
|
if not filepath:
|
|
|
|
|
|
continue
|
2023-04-19 21:29:20 +08:00
|
|
|
|
vs_path, _ = local_doc_qa.init_knowledge_vector_store(filepath)
|
2023-04-13 23:01:52 +08:00
|
|
|
|
history = []
|
|
|
|
|
|
while True:
|
|
|
|
|
|
query = input("Input your question 请输入问题:")
|
2023-04-26 22:29:20 +08:00
|
|
|
|
last_print_len = 0
|
|
|
|
|
|
for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
|
|
|
|
|
|
vs_path=vs_path,
|
|
|
|
|
|
chat_history=history,
|
2023-05-01 23:51:29 +08:00
|
|
|
|
streaming=STREAMING):
|
|
|
|
|
|
if STREAMING:
|
2023-05-10 13:28:44 +08:00
|
|
|
|
logger.info(resp["result"][last_print_len:])
|
2023-05-01 23:51:29 +08:00
|
|
|
|
last_print_len = len(resp["result"])
|
|
|
|
|
|
else:
|
2023-05-08 18:29:09 +08:00
|
|
|
|
logger.info(resp["result"])
|
2023-04-13 23:01:52 +08:00
|
|
|
|
if REPLY_WITH_SOURCE:
|
2023-04-26 22:29:20 +08:00
|
|
|
|
source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
|
|
|
|
|
|
# f"""相关度:{doc.metadata['score']}\n\n"""
|
|
|
|
|
|
for inum, doc in
|
|
|
|
|
|
enumerate(resp["source_documents"])]
|
2023-05-08 18:29:09 +08:00
|
|
|
|
logger.info("\n\n" + "\n\n".join(source_text))
|