199 lines
7.2 KiB
Python
199 lines
7.2 KiB
Python
|
|
from abc import ABC, abstractmethod
|
|||
|
|
from typing import Optional, List
|
|||
|
|
import traceback
|
|||
|
|
from collections import deque
|
|||
|
|
from queue import Queue
|
|||
|
|
from threading import Thread
|
|||
|
|
|
|||
|
|
import torch
|
|||
|
|
import transformers
|
|||
|
|
from models.loader import LoaderCheckPoint
|
|||
|
|
|
|||
|
|
|
|||
|
|
class ListenerToken:
|
|||
|
|
"""
|
|||
|
|
观测结果
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
input_ids: torch.LongTensor
|
|||
|
|
_scores: torch.FloatTensor
|
|||
|
|
|
|||
|
|
def __init__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor):
|
|||
|
|
self.input_ids = input_ids
|
|||
|
|
self._scores = _scores
|
|||
|
|
|
|||
|
|
|
|||
|
|
class AnswerResult:
|
|||
|
|
"""
|
|||
|
|
消息实体
|
|||
|
|
"""
|
|||
|
|
history: List[List[str]] = []
|
|||
|
|
llm_output: Optional[dict] = None
|
|||
|
|
listenerToken: ListenerToken = None
|
|||
|
|
|
|||
|
|
|
|||
|
|
class AnswerResultStream:
|
|||
|
|
def __init__(self, callback_func=None):
|
|||
|
|
self.callback_func = callback_func
|
|||
|
|
|
|||
|
|
def __call__(self, answerResult: AnswerResult):
|
|||
|
|
if self.callback_func is not None:
|
|||
|
|
self.callback_func(answerResult)
|
|||
|
|
|
|||
|
|
|
|||
|
|
class AnswerResultQueueSentinelTokenListenerQueue(transformers.StoppingCriteria):
|
|||
|
|
"""
|
|||
|
|
定义模型stopping_criteria 监听者,在每次响应时将队列数据同步到AnswerResult
|
|||
|
|
实现此监听器的目的是,不同模型的预测输出可能不是矢量信息,hf框架可以自定义transformers.StoppingCriteria入参来接收每次预测的Tensor和损失函数,
|
|||
|
|
通过给 StoppingCriteriaList指定模型生成答案时停止的条件。每个 StoppingCriteria 对象表示一个停止条件
|
|||
|
|
当每轮预测任务开始时,StoppingCriteria都会收到相同的预测结果,最终由下层实现类确认是否结束
|
|||
|
|
输出值可用于 generatorAnswer generate_with_streaming的自定义参数观测,以实现更加精细的控制
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
listenerQueue: deque = deque(maxlen=1)
|
|||
|
|
|
|||
|
|
def __init__(self):
|
|||
|
|
transformers.StoppingCriteria.__init__(self)
|
|||
|
|
|
|||
|
|
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor, **kwargs) -> bool:
|
|||
|
|
"""
|
|||
|
|
每次响应时将数据添加到响应队列
|
|||
|
|
:param input_ids:
|
|||
|
|
:param _scores:
|
|||
|
|
:param kwargs:
|
|||
|
|
:return:
|
|||
|
|
"""
|
|||
|
|
self.listenerQueue.append(ListenerToken(input_ids=input_ids, _scores=_scores))
|
|||
|
|
return False
|
|||
|
|
|
|||
|
|
|
|||
|
|
class Iteratorize:
|
|||
|
|
"""
|
|||
|
|
Transforms a function that takes a callback
|
|||
|
|
into a lazy iterator (generator).
|
|||
|
|
"""
|
|||
|
|
|
|||
|
|
def __init__(self, func, kwargs={}):
|
|||
|
|
self.mfunc = func
|
|||
|
|
self.q = Queue()
|
|||
|
|
self.sentinel = object()
|
|||
|
|
self.kwargs = kwargs
|
|||
|
|
self.stop_now = False
|
|||
|
|
|
|||
|
|
def _callback(val):
|
|||
|
|
"""
|
|||
|
|
模型输出预测结果收集
|
|||
|
|
通过定义generate_with_callback收集器AnswerResultStream,收集模型预测的AnswerResult响应结果,最终由下层实现类确认是否结束
|
|||
|
|
结束条件包含如下
|
|||
|
|
1、模型预测结束、收集器self.q队列收到 self.sentinel标识
|
|||
|
|
2、在处理迭代器队列消息时返回了break跳出迭代器,触发了StopIteration事件
|
|||
|
|
3、模型预测出错
|
|||
|
|
因为当前类是迭代器,所以在for in 中执行了break后 __exit__ 方法会被调用,最终stop_now属性会被更新,然后抛出异常结束预测行为
|
|||
|
|
迭代器收集的行为如下
|
|||
|
|
创建Iteratorize迭代对象,
|
|||
|
|
定义generate_with_callback收集器AnswerResultStream
|
|||
|
|
启动一个线程异步预测结果来调用上游checkpoint的实现方法_generate_answer
|
|||
|
|
_generate_answer通过generate_with_callback定义的收集器,收集上游checkpoint包装的AnswerResult消息体
|
|||
|
|
由于self.q是阻塞模式,每次预测后会被消费后才会执行下次预测
|
|||
|
|
这时generate_with_callback会被阻塞
|
|||
|
|
主线程Iteratorize对象的__next__方法调用获取阻塞消息并消费
|
|||
|
|
1、消息为上游checkpoint包装的AnswerResult消息体,返回下游处理
|
|||
|
|
2、消息为self.sentinel标识,抛出StopIteration异常
|
|||
|
|
主线程Iteratorize对象__exit__收到消息,最终stop_now属性会被更新
|
|||
|
|
异步线程检测stop_now属性被更新,抛出异常结束预测行为
|
|||
|
|
迭代行为结束
|
|||
|
|
:param val:
|
|||
|
|
:return:
|
|||
|
|
"""
|
|||
|
|
if self.stop_now:
|
|||
|
|
raise ValueError
|
|||
|
|
self.q.put(val)
|
|||
|
|
|
|||
|
|
def gen():
|
|||
|
|
try:
|
|||
|
|
ret = self.mfunc(callback=_callback, **self.kwargs)
|
|||
|
|
except ValueError:
|
|||
|
|
pass
|
|||
|
|
except:
|
|||
|
|
traceback.print_exc()
|
|||
|
|
pass
|
|||
|
|
|
|||
|
|
self.q.put(self.sentinel)
|
|||
|
|
|
|||
|
|
self.thread = Thread(target=gen)
|
|||
|
|
self.thread.start()
|
|||
|
|
|
|||
|
|
def __iter__(self):
|
|||
|
|
return self
|
|||
|
|
|
|||
|
|
def __next__(self):
|
|||
|
|
obj = self.q.get(True, None)
|
|||
|
|
if obj is self.sentinel:
|
|||
|
|
raise StopIteration
|
|||
|
|
else:
|
|||
|
|
return obj
|
|||
|
|
|
|||
|
|
def __del__(self):
|
|||
|
|
"""
|
|||
|
|
暂无实现
|
|||
|
|
:return:
|
|||
|
|
"""
|
|||
|
|
pass
|
|||
|
|
|
|||
|
|
def __enter__(self):
|
|||
|
|
return self
|
|||
|
|
|
|||
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|||
|
|
""" break 后会执行 """
|
|||
|
|
self.stop_now = True
|
|||
|
|
|
|||
|
|
|
|||
|
|
class BaseAnswer(ABC):
|
|||
|
|
"""上层业务包装器.用于结果生成统一api调用"""
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
@abstractmethod
|
|||
|
|
def _check_point(self) -> LoaderCheckPoint:
|
|||
|
|
"""Return _check_point of llm."""
|
|||
|
|
|
|||
|
|
@property
|
|||
|
|
@abstractmethod
|
|||
|
|
def _history_len(self) -> int:
|
|||
|
|
"""Return _history_len of llm."""
|
|||
|
|
|
|||
|
|
@abstractmethod
|
|||
|
|
def set_history_len(self, history_len: int) -> None:
|
|||
|
|
"""Return _history_len of llm."""
|
|||
|
|
|
|||
|
|
def generatorAnswer(self, prompt: str,
|
|||
|
|
history: List[List[str]] = [],
|
|||
|
|
streaming: bool = False):
|
|||
|
|
def generate_with_callback(callback=None, **kwargs):
|
|||
|
|
kwargs['generate_with_callback'] = AnswerResultStream(callback_func=callback)
|
|||
|
|
self._generate_answer(**kwargs)
|
|||
|
|
|
|||
|
|
def generate_with_streaming(**kwargs):
|
|||
|
|
return Iteratorize(generate_with_callback, kwargs)
|
|||
|
|
|
|||
|
|
"""
|
|||
|
|
eos_token_id是指定token(例如,"</s>"),
|
|||
|
|
用于表示序列的结束。在生成文本任务中,生成器在生成序列时,将不断地生成token,直到生成此特殊的eos_token_id,表示序列生成已经完成。
|
|||
|
|
在Hugging Face Transformer模型中,eos_token_id是由tokenizer自动添加到输入中的。
|
|||
|
|
在模型生成输出时,如果模型生成了eos_token_id,则生成过程将停止并返回生成的序列。
|
|||
|
|
"""
|
|||
|
|
eos_token_ids = [
|
|||
|
|
self._check_point.tokenizer.eos_token_id] if self._check_point.tokenizer.eos_token_id is not None else []
|
|||
|
|
|
|||
|
|
with generate_with_streaming(prompt=prompt, history=history, streaming=streaming) as generator:
|
|||
|
|
for answerResult in generator:
|
|||
|
|
if answerResult.listenerToken:
|
|||
|
|
output = answerResult.listenerToken.input_ids
|
|||
|
|
yield answerResult
|
|||
|
|
|
|||
|
|
@abstractmethod
|
|||
|
|
def _generate_answer(self, prompt: str,
|
|||
|
|
history: List[List[str]] = [],
|
|||
|
|
streaming: bool = False,
|
|||
|
|
generate_with_callback: AnswerResultStream = None) -> None:
|
|||
|
|
pass
|