Langchain-Chatchat/server/model_workers/qwen.py

128 lines
3.9 KiB
Python
Raw Normal View History

import json
import sys
from fastchat.conversation import Conversation
from configs import TEMPERATURE
from http import HTTPStatus
from typing import List, Literal, Dict
from fastchat import conversation as conv
from server.model_workers.base import ApiModelWorker
from server.utils import get_model_worker_config
def request_qwen_api(
messages: List[Dict[str, str]],
api_key: str = None,
version: str = "qwen-turbo",
temperature: float = TEMPERATURE,
model_name: str = "qwen-api",
):
import dashscope
config = get_model_worker_config(model_name)
api_key = api_key or config.get("api_key")
version = version or config.get("version")
gen = dashscope.Generation()
responses = gen.call(
model=version,
temperature=temperature,
api_key=api_key,
messages=messages,
result_format='message', # set the result is message format.
stream=True,
)
text = ""
for resp in responses:
if resp.status_code != HTTPStatus.OK:
yield {
"code": resp.status_code,
"text": "api not response correctly",
}
if resp["status_code"] == 200:
if choices := resp["output"]["choices"]:
yield {
"code": 200,
"text": choices[0]["message"]["content"],
}
else:
yield {
"code": resp["status_code"],
"text": resp["message"],
}
class QwenWorker(ApiModelWorker):
def __init__(
self,
*,
version: Literal["qwen-turbo", "qwen-plus"] = "qwen-turbo",
model_names: List[str] = ["qwen-api"],
controller_addr: str,
worker_addr: str,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 16384)
super().__init__(**kwargs)
config = self.get_config()
self.api_key = config.get("api_key")
self.version = version
def generate_stream_gate(self, params):
messages = self.prompt_to_messages(params["prompt"])
for resp in request_qwen_api(messages=messages,
api_key=self.api_key,
version=self.version,
temperature=params.get("temperature")):
if resp["code"] == 200:
yield json.dumps({
"error_code": 0,
"text": resp["text"]
},
ensure_ascii=False
).encode() + b"\0"
else:
yield json.dumps({
"error_code": resp["code"],
"text": resp["text"]
},
ensure_ascii=False
).encode() + b"\0"
def get_embeddings(self, params):
# TODO: 支持embeddings
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
# TODO: 确认模板是否需要修改
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
messages=[],
roles=["user", "assistant", "system"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = QwenWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:20007",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=20007)