2023-05-18 22:54:41 +08:00
|
|
|
|
from abc import ABC
|
|
|
|
|
|
|
|
|
|
|
|
from langchain.llms.base import LLM
|
|
|
|
|
|
import random
|
|
|
|
|
|
import torch
|
|
|
|
|
|
import transformers
|
|
|
|
|
|
from transformers.generation.logits_process import LogitsProcessor
|
|
|
|
|
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
|
|
|
|
|
|
from typing import Optional, List, Dict, Any
|
|
|
|
|
|
from models.loader import LoaderCheckPoint
|
|
|
|
|
|
from models.base import (BaseAnswer,
|
|
|
|
|
|
AnswerResult,
|
|
|
|
|
|
AnswerResultStream,
|
|
|
|
|
|
AnswerResultQueueSentinelTokenListenerQueue)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
|
|
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
|
|
|
|
|
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
|
|
|
|
|
scores.zero_()
|
|
|
|
|
|
scores[..., 5] = 5e4
|
|
|
|
|
|
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LLamaLLM(BaseAnswer, LLM, ABC):
|
|
|
|
|
|
checkPoint: LoaderCheckPoint = None
|
|
|
|
|
|
history = []
|
|
|
|
|
|
history_len: int = 3
|
|
|
|
|
|
max_new_tokens: int = 500
|
|
|
|
|
|
num_beams: int = 1
|
|
|
|
|
|
temperature: float = 0.5
|
|
|
|
|
|
top_p: float = 0.4
|
|
|
|
|
|
top_k: int = 10
|
|
|
|
|
|
repetition_penalty: float = 1.2
|
|
|
|
|
|
encoder_repetition_penalty: int = 1
|
|
|
|
|
|
min_length: int = 0
|
|
|
|
|
|
logits_processor: LogitsProcessorList = None
|
|
|
|
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None
|
|
|
|
|
|
eos_token_id: Optional[int] = [2]
|
|
|
|
|
|
|
|
|
|
|
|
state: object = {'max_new_tokens': 50,
|
|
|
|
|
|
'seed': 1,
|
|
|
|
|
|
'temperature': 0, 'top_p': 0.1,
|
|
|
|
|
|
'top_k': 40, 'typical_p': 1,
|
|
|
|
|
|
'repetition_penalty': 1.2,
|
|
|
|
|
|
'encoder_repetition_penalty': 1,
|
|
|
|
|
|
'no_repeat_ngram_size': 0,
|
|
|
|
|
|
'min_length': 0,
|
|
|
|
|
|
'penalty_alpha': 0,
|
|
|
|
|
|
'num_beams': 1,
|
|
|
|
|
|
'length_penalty': 1,
|
|
|
|
|
|
'early_stopping': False, 'add_bos_token': True, 'ban_eos_token': False,
|
|
|
|
|
|
'truncation_length': 2048, 'custom_stopping_strings': '',
|
|
|
|
|
|
'cpu_memory': 0, 'auto_devices': False, 'disk': False, 'cpu': False, 'bf16': False,
|
|
|
|
|
|
'load_in_8bit': False, 'wbits': 'None', 'groupsize': 'None', 'model_type': 'None',
|
|
|
|
|
|
'pre_layer': 0, 'gpu_memory_0': 0}
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
self.checkPoint = checkPoint
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
|
|
return "LLamaLLM"
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
|
def _check_point(self) -> LoaderCheckPoint:
|
|
|
|
|
|
return self.checkPoint
|
|
|
|
|
|
|
|
|
|
|
|
def encode(self, prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
|
|
|
|
|
|
input_ids = self.checkPoint.tokenizer.encode(str(prompt), return_tensors='pt',
|
|
|
|
|
|
add_special_tokens=add_special_tokens)
|
|
|
|
|
|
# This is a hack for making replies more creative.
|
|
|
|
|
|
if not add_bos_token and input_ids[0][0] == self.checkPoint.tokenizer.bos_token_id:
|
|
|
|
|
|
input_ids = input_ids[:, 1:]
|
|
|
|
|
|
|
|
|
|
|
|
# Llama adds this extra token when the first character is '\n', and this
|
|
|
|
|
|
# compromises the stopping criteria, so we just remove it
|
|
|
|
|
|
if type(self.checkPoint.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
|
|
|
|
|
|
input_ids = input_ids[:, 1:]
|
|
|
|
|
|
|
|
|
|
|
|
# Handling truncation
|
|
|
|
|
|
if truncation_length is not None:
|
|
|
|
|
|
input_ids = input_ids[:, -truncation_length:]
|
|
|
|
|
|
|
|
|
|
|
|
return input_ids.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
def decode(self, output_ids):
|
|
|
|
|
|
reply = self.checkPoint.tokenizer.decode(output_ids, skip_special_tokens=True)
|
|
|
|
|
|
return reply
|
|
|
|
|
|
|
|
|
|
|
|
# 将历史对话数组转换为文本格式
|
|
|
|
|
|
def history_to_text(self, query):
|
|
|
|
|
|
formatted_history = ''
|
|
|
|
|
|
history = self.history[-self.history_len:] if self.history_len > 0 else []
|
|
|
|
|
|
for i, (old_query, response) in enumerate(history):
|
|
|
|
|
|
formatted_history += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
|
|
|
|
|
formatted_history += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
|
|
|
|
|
return formatted_history
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_inputs_for_generation(self,
|
|
|
|
|
|
input_ids: torch.LongTensor):
|
|
|
|
|
|
"""
|
|
|
|
|
|
预生成注意力掩码和 输入序列中每个位置的索引的张量
|
|
|
|
|
|
# TODO 没有思路
|
|
|
|
|
|
:return:
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
mask_positions = torch.zeros((1, input_ids.shape[1]), dtype=input_ids.dtype).to(self.checkPoint.model.device)
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = self.get_masks(input_ids, input_ids.device)
|
|
|
|
|
|
|
|
|
|
|
|
position_ids = self.get_position_ids(
|
|
|
|
|
|
input_ids,
|
|
|
|
|
|
device=input_ids.device,
|
|
|
|
|
|
mask_positions=mask_positions
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
return input_ids, position_ids, attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
def generate_softprompt_history_tensors(self, query):
|
|
|
|
|
|
"""
|
|
|
|
|
|
历史对话软提示
|
|
|
|
|
|
这段代码首先定义了一个名为 history_to_text 的函数,用于将 self.history
|
|
|
|
|
|
数组转换为所需的文本格式。然后,我们将格式化后的历史文本
|
|
|
|
|
|
再用 self.encode 将其转换为向量表示。最后,将历史对话向量与当前输入的对话向量拼接在一起。
|
|
|
|
|
|
:return:
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
# 对话内容
|
|
|
|
|
|
# 处理历史对话
|
|
|
|
|
|
formatted_history = self.history_to_text(query)
|
|
|
|
|
|
return formatted_history
|
|
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
|
def _history_len(self) -> int:
|
|
|
|
|
|
return self.history_len
|
|
|
|
|
|
|
|
|
|
|
|
def set_history_len(self, history_len: int = 10) -> None:
|
|
|
|
|
|
self.history_len = history_len
|
|
|
|
|
|
|
|
|
|
|
|
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
|
|
|
|
|
print(f"__call:{prompt}")
|
|
|
|
|
|
if self.logits_processor is None:
|
|
|
|
|
|
self.logits_processor = LogitsProcessorList()
|
|
|
|
|
|
self.logits_processor.append(InvalidScoreLogitsProcessor())
|
|
|
|
|
|
|
|
|
|
|
|
gen_kwargs = {
|
|
|
|
|
|
"max_new_tokens": self.max_new_tokens,
|
|
|
|
|
|
"num_beams": self.num_beams,
|
|
|
|
|
|
"top_p": self.top_p,
|
|
|
|
|
|
"top_k": self.top_k,
|
|
|
|
|
|
"repetition_penalty": self.repetition_penalty,
|
|
|
|
|
|
"encoder_repetition_penalty": self.encoder_repetition_penalty,
|
|
|
|
|
|
"min_length": self.min_length,
|
|
|
|
|
|
"temperature": self.temperature,
|
|
|
|
|
|
"eos_token_id": self.eos_token_id,
|
|
|
|
|
|
"logits_processor": self.logits_processor}
|
|
|
|
|
|
|
2023-05-23 23:10:31 +08:00
|
|
|
|
# 向量转换
|
2023-05-18 22:54:41 +08:00
|
|
|
|
input_ids = self.encode(prompt, add_bos_token=self.state['add_bos_token'], truncation_length=self.max_new_tokens)
|
|
|
|
|
|
# input_ids, position_ids, attention_mask = self.prepare_inputs_for_generation(input_ids=filler_input_ids)
|
|
|
|
|
|
|
2023-05-23 23:10:31 +08:00
|
|
|
|
|
2023-05-18 22:54:41 +08:00
|
|
|
|
gen_kwargs.update({'inputs': input_ids})
|
|
|
|
|
|
# 注意力掩码
|
|
|
|
|
|
# gen_kwargs.update({'attention_mask': attention_mask})
|
|
|
|
|
|
# gen_kwargs.update({'position_ids': position_ids})
|
|
|
|
|
|
if self.stopping_criteria is None:
|
|
|
|
|
|
self.stopping_criteria = transformers.StoppingCriteriaList()
|
|
|
|
|
|
# 观测输出
|
|
|
|
|
|
gen_kwargs.update({'stopping_criteria': self.stopping_criteria})
|
|
|
|
|
|
|
2023-05-23 23:10:31 +08:00
|
|
|
|
output_ids = self.checkPoint.model.generate(**gen_kwargs)
|
|
|
|
|
|
new_tokens = len(output_ids[0]) - len(input_ids[0])
|
|
|
|
|
|
reply = self.decode(output_ids[0][-new_tokens:])
|
|
|
|
|
|
print(f"response:{reply}")
|
|
|
|
|
|
self.history = self.history + [[None, reply]]
|
|
|
|
|
|
return reply
|
2023-05-18 22:54:41 +08:00
|
|
|
|
|
|
|
|
|
|
def _generate_answer(self, prompt: str,
|
|
|
|
|
|
history: List[List[str]] = [],
|
|
|
|
|
|
streaming: bool = False,
|
|
|
|
|
|
generate_with_callback: AnswerResultStream = None) -> None:
|
|
|
|
|
|
if history:
|
|
|
|
|
|
self.history = history
|
|
|
|
|
|
# Create the StoppingCriteriaList with the stopping strings
|
|
|
|
|
|
self.stopping_criteria = transformers.StoppingCriteriaList()
|
|
|
|
|
|
# 定义模型stopping_criteria 队列,在每次响应时将 torch.LongTensor, torch.FloatTensor同步到AnswerResult
|
|
|
|
|
|
listenerQueue = AnswerResultQueueSentinelTokenListenerQueue()
|
|
|
|
|
|
self.stopping_criteria.append(listenerQueue)
|
|
|
|
|
|
# TODO 需要实现chat对话模块和注意力模型,目前_call为langchain的LLM拓展的api,默认为无提示词模式,如果需要操作注意力模型,可以参考chat_glm的实现
|
|
|
|
|
|
softprompt = self.generate_softprompt_history_tensors(prompt)
|
|
|
|
|
|
response = self._call(prompt=softprompt, stop=['\n###'])
|
|
|
|
|
|
answer_result = AnswerResult()
|
|
|
|
|
|
answer_result.history = self.history
|
|
|
|
|
|
if listenerQueue.listenerQueue.__len__() > 0:
|
|
|
|
|
|
answer_result.listenerToken = listenerQueue.listenerQueue.pop()
|
|
|
|
|
|
answer_result.llm_output = {"answer": response}
|
|
|
|
|
|
generate_with_callback(answer_result)
|