2023-08-08 13:36:20 +08:00
|
|
|
|
import os
|
2023-09-15 17:52:22 +08:00
|
|
|
|
from configs import (
|
2023-08-10 00:36:51 +08:00
|
|
|
|
KB_ROOT_PATH,
|
|
|
|
|
|
CHUNK_SIZE,
|
|
|
|
|
|
OVERLAP_SIZE,
|
2023-09-08 08:55:12 +08:00
|
|
|
|
ZH_TITLE_ENHANCE,
|
2023-09-17 13:54:03 +08:00
|
|
|
|
logger,
|
|
|
|
|
|
log_verbose,
|
2023-09-15 18:11:15 +08:00
|
|
|
|
text_splitter_dict,
|
2023-11-09 22:15:52 +08:00
|
|
|
|
LLM_MODELS,
|
2023-09-15 18:11:15 +08:00
|
|
|
|
TEXT_SPLITTER_NAME,
|
2023-08-10 00:36:51 +08:00
|
|
|
|
)
|
2023-08-10 23:04:05 +08:00
|
|
|
|
import importlib
|
2023-09-18 11:00:04 +08:00
|
|
|
|
from text_splitter import zh_title_enhance as func_zh_title_enhance
|
2023-08-26 14:21:59 +08:00
|
|
|
|
import langchain.document_loaders
|
|
|
|
|
|
from langchain.docstore.document import Document
|
2023-09-04 16:37:44 +08:00
|
|
|
|
from langchain.text_splitter import TextSplitter
|
2023-08-26 14:21:59 +08:00
|
|
|
|
from pathlib import Path
|
2023-10-31 16:59:40 +08:00
|
|
|
|
from server.utils import run_in_thread_pool, get_model_worker_config
|
2023-11-21 21:00:46 +08:00
|
|
|
|
import json
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
from typing import List, Union,Dict, Tuple, Generator
|
2023-09-21 14:41:49 +08:00
|
|
|
|
import chardet
|
2023-08-28 13:50:35 +08:00
|
|
|
|
|
2023-10-31 16:59:40 +08:00
|
|
|
|
|
2023-07-27 23:22:07 +08:00
|
|
|
|
def validate_kb_name(knowledge_base_id: str) -> bool:
|
|
|
|
|
|
# 检查是否包含预期外的字符或路径攻击关键字
|
|
|
|
|
|
if "../" in knowledge_base_id:
|
|
|
|
|
|
return False
|
|
|
|
|
|
return True
|
2023-08-06 23:43:54 +08:00
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-08-06 23:43:54 +08:00
|
|
|
|
def get_kb_path(knowledge_base_name: str):
|
|
|
|
|
|
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
|
|
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-08-06 23:43:54 +08:00
|
|
|
|
def get_doc_path(knowledge_base_name: str):
|
|
|
|
|
|
return os.path.join(get_kb_path(knowledge_base_name), "content")
|
|
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-09-17 13:54:03 +08:00
|
|
|
|
def get_vs_path(knowledge_base_name: str, vector_name: str):
|
2023-10-31 14:26:50 +08:00
|
|
|
|
return os.path.join(get_kb_path(knowledge_base_name), "vector_store", vector_name)
|
2023-08-06 23:43:54 +08:00
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-08-06 23:43:54 +08:00
|
|
|
|
def get_file_path(knowledge_base_name: str, doc_name: str):
|
2023-08-08 13:36:20 +08:00
|
|
|
|
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
|
|
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-08-08 17:41:58 +08:00
|
|
|
|
def list_kbs_from_folder():
|
|
|
|
|
|
return [f for f in os.listdir(KB_ROOT_PATH)
|
|
|
|
|
|
if os.path.isdir(os.path.join(KB_ROOT_PATH, f))]
|
|
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-08-28 13:50:35 +08:00
|
|
|
|
def list_files_from_folder(kb_name: str):
|
2023-11-24 22:47:55 +08:00
|
|
|
|
doc_path = get_doc_path(kb_name)
|
|
|
|
|
|
result = []
|
|
|
|
|
|
|
|
|
|
|
|
def is_skiped_path(path: str):
|
2023-11-17 11:39:32 +08:00
|
|
|
|
tail = os.path.basename(path).lower()
|
|
|
|
|
|
for x in ["temp", "tmp", ".", "~$"]:
|
|
|
|
|
|
if tail.startswith(x):
|
2023-11-24 22:47:55 +08:00
|
|
|
|
return True
|
|
|
|
|
|
return False
|
2023-11-17 11:39:32 +08:00
|
|
|
|
|
2023-11-24 22:47:55 +08:00
|
|
|
|
def process_entry(entry):
|
|
|
|
|
|
if is_skiped_path(entry.path):
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
if entry.is_symlink():
|
|
|
|
|
|
target_path = os.path.realpath(entry.path)
|
|
|
|
|
|
with os.scandir(target_path) as target_it:
|
|
|
|
|
|
for target_entry in target_it:
|
|
|
|
|
|
process_entry(target_entry)
|
|
|
|
|
|
elif entry.is_file():
|
|
|
|
|
|
result.append(entry.path)
|
|
|
|
|
|
elif entry.is_dir():
|
|
|
|
|
|
with os.scandir(entry.path) as it:
|
|
|
|
|
|
for sub_entry in it:
|
|
|
|
|
|
process_entry(sub_entry)
|
|
|
|
|
|
|
|
|
|
|
|
with os.scandir(doc_path) as it:
|
|
|
|
|
|
for entry in it:
|
|
|
|
|
|
process_entry(entry)
|
2023-10-31 16:59:40 +08:00
|
|
|
|
|
|
|
|
|
|
return result
|
2023-08-08 16:21:00 +08:00
|
|
|
|
|
2023-08-27 20:23:07 +08:00
|
|
|
|
|
2023-08-26 14:21:59 +08:00
|
|
|
|
LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
|
|
|
|
|
|
"UnstructuredMarkdownLoader": ['.md'],
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
"JSONLoader": [".json"],
|
|
|
|
|
|
"JSONLinesLoader": [".jsonl"],
|
2023-08-08 16:21:00 +08:00
|
|
|
|
"CSVLoader": [".csv"],
|
2023-10-27 11:52:44 +08:00
|
|
|
|
# "FilteredCSVLoader": [".csv"], # 需要自己指定,目前还没有支持
|
2023-09-01 10:23:57 +08:00
|
|
|
|
"RapidOCRPDFLoader": [".pdf"],
|
|
|
|
|
|
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
"UnstructuredEmailLoader": ['.eml', '.msg'],
|
|
|
|
|
|
"UnstructuredEPubLoader": ['.epub'],
|
|
|
|
|
|
"UnstructuredExcelLoader": ['.xlsx', '.xlsd'],
|
|
|
|
|
|
"NotebookLoader": ['.ipynb'],
|
|
|
|
|
|
"UnstructuredODTLoader": ['.odt'],
|
|
|
|
|
|
"PythonLoader": ['.py'],
|
|
|
|
|
|
"UnstructuredRSTLoader": ['.rst'],
|
|
|
|
|
|
"UnstructuredRTFLoader": ['.rtf'],
|
|
|
|
|
|
"SRTLoader": ['.srt'],
|
|
|
|
|
|
"TomlLoader": ['.toml'],
|
|
|
|
|
|
"UnstructuredTSVLoader": ['.tsv'],
|
|
|
|
|
|
"UnstructuredWordDocumentLoader": ['.docx', 'doc'],
|
|
|
|
|
|
"UnstructuredXMLLoader": ['.xml'],
|
|
|
|
|
|
"UnstructuredPowerPointLoader": ['.ppt', '.pptx'],
|
|
|
|
|
|
"UnstructuredFileLoader": ['.txt'],
|
2023-08-08 16:21:00 +08:00
|
|
|
|
}
|
|
|
|
|
|
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
|
|
|
|
|
|
|
2023-08-26 14:21:59 +08:00
|
|
|
|
|
2023-11-21 21:00:46 +08:00
|
|
|
|
# patch json.dumps to disable ensure_ascii
|
|
|
|
|
|
def _new_json_dumps(obj, **kwargs):
|
|
|
|
|
|
kwargs["ensure_ascii"] = False
|
|
|
|
|
|
return _origin_json_dumps(obj, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
if json.dumps is not _new_json_dumps:
|
|
|
|
|
|
_origin_json_dumps = json.dumps
|
|
|
|
|
|
json.dumps = _new_json_dumps
|
|
|
|
|
|
|
|
|
|
|
|
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
class JSONLinesLoader(langchain.document_loaders.JSONLoader):
|
2023-08-26 14:21:59 +08:00
|
|
|
|
'''
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
行式 Json 加载器,要求文件扩展名为 .jsonl
|
2023-08-26 14:21:59 +08:00
|
|
|
|
'''
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
self._json_lines = True
|
2023-08-26 14:21:59 +08:00
|
|
|
|
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
|
|
|
|
|
|
langchain.document_loaders.JSONLinesLoader = JSONLinesLoader
|
2023-08-26 14:21:59 +08:00
|
|
|
|
|
|
|
|
|
|
|
2023-08-08 16:21:00 +08:00
|
|
|
|
def get_LoaderClass(file_extension):
|
|
|
|
|
|
for LoaderClass, extensions in LOADER_DICT.items():
|
|
|
|
|
|
if file_extension in extensions:
|
|
|
|
|
|
return LoaderClass
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-09-08 08:55:12 +08:00
|
|
|
|
# 把一些向量化共用逻辑从KnowledgeFile抽取出来,等langchain支持内存文件的时候,可以将非磁盘文件向量化
|
2023-11-17 11:39:32 +08:00
|
|
|
|
def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
|
2023-09-08 08:55:12 +08:00
|
|
|
|
'''
|
|
|
|
|
|
根据loader_name和文件路径或内容返回文档加载器。
|
|
|
|
|
|
'''
|
2023-11-17 11:39:32 +08:00
|
|
|
|
loader_kwargs = loader_kwargs or {}
|
2023-09-08 08:55:12 +08:00
|
|
|
|
try:
|
2023-10-27 11:52:44 +08:00
|
|
|
|
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader","FilteredCSVLoader"]:
|
2023-09-08 08:55:12 +08:00
|
|
|
|
document_loaders_module = importlib.import_module('document_loaders')
|
|
|
|
|
|
else:
|
|
|
|
|
|
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
|
|
|
|
|
DocumentLoader = getattr(document_loaders_module, loader_name)
|
|
|
|
|
|
except Exception as e:
|
2023-11-17 11:39:32 +08:00
|
|
|
|
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
|
2023-09-08 20:48:31 +08:00
|
|
|
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
|
|
|
|
|
exc_info=e if log_verbose else None)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
|
|
|
|
|
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
|
|
|
|
|
|
|
|
|
|
|
if loader_name == "UnstructuredFileLoader":
|
2023-11-17 11:39:32 +08:00
|
|
|
|
loader_kwargs.setdefault("autodetect_encoding", True)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
elif loader_name == "CSVLoader":
|
2023-11-17 11:39:32 +08:00
|
|
|
|
if not loader_kwargs.get("encoding"):
|
|
|
|
|
|
# 如果未指定 encoding,自动识别文件编码类型,避免langchain loader 加载文件报编码错误
|
|
|
|
|
|
with open(file_path, 'rb') as struct_file:
|
|
|
|
|
|
encode_detect = chardet.detect(struct_file.read())
|
|
|
|
|
|
if encode_detect is None:
|
|
|
|
|
|
encode_detect = {"encoding": "utf-8"}
|
|
|
|
|
|
loader_kwargs["encoding"] = encode_detect["encoding"]
|
2023-10-27 11:52:44 +08:00
|
|
|
|
## TODO:支持更多的自定义CSV读取逻辑
|
2023-09-21 14:41:49 +08:00
|
|
|
|
|
2023-09-08 08:55:12 +08:00
|
|
|
|
elif loader_name == "JSONLoader":
|
2023-11-17 11:39:32 +08:00
|
|
|
|
loader_kwargs.setdefault("jq_schema", ".")
|
|
|
|
|
|
loader_kwargs.setdefault("text_content", False)
|
知识库支持 .jsonl, .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件 (#2079)
* 知识库支持行式 json 文件
如果要使用 json 文件, 需要 `conda install jq`(windows 下 pip install jq 会失败)
开发者:
删除 CustomJsonLoader,使用 langchain 自带的 JsonLoader 处理 json 文件,添加 JsonLinesLoader 处理 jsonl 文件。
* 知识库支持 .epub, .xlsx, .xlsd, .ipynb, .odt, .py, .srt, .toml, .doc, .ppt 文件
为 .eml, .msg, .rst, .rtf, .tsv, .docx, .xml, .pptx 指定专用加载器
2023-11-16 09:37:09 +08:00
|
|
|
|
elif loader_name == "JSONLinesLoader":
|
2023-11-17 11:39:32 +08:00
|
|
|
|
loader_kwargs.setdefault("jq_schema", ".")
|
|
|
|
|
|
loader_kwargs.setdefault("text_content", False)
|
|
|
|
|
|
|
|
|
|
|
|
loader = DocumentLoader(file_path, **loader_kwargs)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
return loader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_text_splitter(
|
2023-10-27 11:52:44 +08:00
|
|
|
|
splitter_name: str = TEXT_SPLITTER_NAME,
|
|
|
|
|
|
chunk_size: int = CHUNK_SIZE,
|
|
|
|
|
|
chunk_overlap: int = OVERLAP_SIZE,
|
2023-11-09 22:15:52 +08:00
|
|
|
|
llm_model: str = LLM_MODELS[0],
|
2023-09-08 08:55:12 +08:00
|
|
|
|
):
|
2023-09-15 09:53:58 +08:00
|
|
|
|
"""
|
2023-09-08 08:55:12 +08:00
|
|
|
|
根据参数获取特定的分词器
|
2023-09-15 09:53:58 +08:00
|
|
|
|
"""
|
2023-09-08 08:55:12 +08:00
|
|
|
|
splitter_name = splitter_name or "SpacyTextSplitter"
|
|
|
|
|
|
try:
|
2023-09-13 15:42:12 +08:00
|
|
|
|
if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定
|
|
|
|
|
|
headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on']
|
|
|
|
|
|
text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter(
|
|
|
|
|
|
headers_to_split_on=headers_to_split_on)
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
try: ## 优先使用用户自定义的text_splitter
|
|
|
|
|
|
text_splitter_module = importlib.import_module('text_splitter')
|
|
|
|
|
|
TextSplitter = getattr(text_splitter_module, splitter_name)
|
|
|
|
|
|
except: ## 否则使用langchain的text_splitter
|
|
|
|
|
|
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
|
|
|
|
|
TextSplitter = getattr(text_splitter_module, splitter_name)
|
|
|
|
|
|
|
2023-09-13 17:12:05 +08:00
|
|
|
|
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载
|
2023-09-13 15:42:12 +08:00
|
|
|
|
try:
|
|
|
|
|
|
text_splitter = TextSplitter.from_tiktoken_encoder(
|
|
|
|
|
|
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
|
|
|
|
|
pipeline="zh_core_web_sm",
|
|
|
|
|
|
chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap
|
|
|
|
|
|
)
|
|
|
|
|
|
except:
|
|
|
|
|
|
text_splitter = TextSplitter.from_tiktoken_encoder(
|
|
|
|
|
|
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
|
|
|
|
|
chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap
|
|
|
|
|
|
)
|
2023-09-13 17:12:05 +08:00
|
|
|
|
elif text_splitter_dict[splitter_name]["source"] == "huggingface": ## 从huggingface加载
|
2023-09-13 15:42:12 +08:00
|
|
|
|
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "":
|
2023-09-15 17:52:22 +08:00
|
|
|
|
config = get_model_worker_config(llm_model)
|
2023-09-13 15:42:12 +08:00
|
|
|
|
text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \
|
2023-09-15 17:52:22 +08:00
|
|
|
|
config.get("model_path")
|
2023-09-13 15:42:12 +08:00
|
|
|
|
|
|
|
|
|
|
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2":
|
|
|
|
|
|
from transformers import GPT2TokenizerFast
|
|
|
|
|
|
from langchain.text_splitter import CharacterTextSplitter
|
2023-09-13 17:12:05 +08:00
|
|
|
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
|
|
|
|
|
else: ## 字符长度加载
|
2023-10-28 23:37:30 +08:00
|
|
|
|
from transformers import AutoTokenizer
|
2023-09-13 15:42:12 +08:00
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
text_splitter_dict[splitter_name]["tokenizer_name_or_path"],
|
|
|
|
|
|
trust_remote_code=True)
|
|
|
|
|
|
text_splitter = TextSplitter.from_huggingface_tokenizer(
|
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
|
chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap
|
|
|
|
|
|
)
|
2023-09-13 17:12:05 +08:00
|
|
|
|
else:
|
|
|
|
|
|
try:
|
|
|
|
|
|
text_splitter = TextSplitter(
|
|
|
|
|
|
pipeline="zh_core_web_sm",
|
|
|
|
|
|
chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap
|
|
|
|
|
|
)
|
|
|
|
|
|
except:
|
|
|
|
|
|
text_splitter = TextSplitter(
|
|
|
|
|
|
chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap
|
|
|
|
|
|
)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
except Exception as e:
|
2023-09-13 15:42:12 +08:00
|
|
|
|
print(e)
|
|
|
|
|
|
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
2023-09-08 08:55:12 +08:00
|
|
|
|
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
|
2023-09-13 15:42:12 +08:00
|
|
|
|
text_splitter = TextSplitter(chunk_size=250, chunk_overlap=50)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
return text_splitter
|
|
|
|
|
|
|
2023-10-27 11:52:44 +08:00
|
|
|
|
|
2023-08-08 16:21:00 +08:00
|
|
|
|
class KnowledgeFile:
|
|
|
|
|
|
def __init__(
|
|
|
|
|
|
self,
|
|
|
|
|
|
filename: str,
|
2023-11-17 11:39:32 +08:00
|
|
|
|
knowledge_base_name: str,
|
|
|
|
|
|
loader_kwargs: Dict = {},
|
2023-08-08 16:21:00 +08:00
|
|
|
|
):
|
2023-09-08 08:55:12 +08:00
|
|
|
|
'''
|
|
|
|
|
|
对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。
|
|
|
|
|
|
'''
|
2023-08-08 16:21:00 +08:00
|
|
|
|
self.kb_name = knowledge_base_name
|
|
|
|
|
|
self.filename = filename
|
2023-08-16 22:40:05 +08:00
|
|
|
|
self.ext = os.path.splitext(filename)[-1].lower()
|
2023-08-08 16:21:00 +08:00
|
|
|
|
if self.ext not in SUPPORTED_EXTS:
|
2023-11-17 11:39:32 +08:00
|
|
|
|
raise ValueError(f"暂未支持的文件格式 {self.filename}")
|
|
|
|
|
|
self.loader_kwargs = loader_kwargs
|
2023-08-08 16:21:00 +08:00
|
|
|
|
self.filepath = get_file_path(knowledge_base_name, filename)
|
|
|
|
|
|
self.docs = None
|
2023-09-04 16:37:44 +08:00
|
|
|
|
self.splited_docs = None
|
2023-08-08 16:21:00 +08:00
|
|
|
|
self.document_loader_name = get_LoaderClass(self.ext)
|
2023-09-15 18:11:15 +08:00
|
|
|
|
self.text_splitter_name = TEXT_SPLITTER_NAME
|
2023-08-08 16:21:00 +08:00
|
|
|
|
|
2023-10-27 11:52:44 +08:00
|
|
|
|
def file2docs(self, refresh: bool = False):
|
2023-09-04 16:37:44 +08:00
|
|
|
|
if self.docs is None or refresh:
|
2023-09-08 08:55:12 +08:00
|
|
|
|
logger.info(f"{self.document_loader_name} used for {self.filepath}")
|
2023-11-17 11:39:32 +08:00
|
|
|
|
loader = get_loader(loader_name=self.document_loader_name,
|
|
|
|
|
|
file_path=self.filepath,
|
|
|
|
|
|
loader_kwargs=self.loader_kwargs)
|
2023-09-04 16:37:44 +08:00
|
|
|
|
self.docs = loader.load()
|
|
|
|
|
|
return self.docs
|
|
|
|
|
|
|
|
|
|
|
|
def docs2texts(
|
2023-10-27 11:52:44 +08:00
|
|
|
|
self,
|
|
|
|
|
|
docs: List[Document] = None,
|
|
|
|
|
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|
|
|
|
|
refresh: bool = False,
|
|
|
|
|
|
chunk_size: int = CHUNK_SIZE,
|
|
|
|
|
|
chunk_overlap: int = OVERLAP_SIZE,
|
|
|
|
|
|
text_splitter: TextSplitter = None,
|
2023-09-04 16:37:44 +08:00
|
|
|
|
):
|
|
|
|
|
|
docs = docs or self.file2docs(refresh=refresh)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
if not docs:
|
|
|
|
|
|
return []
|
2023-09-04 16:37:44 +08:00
|
|
|
|
if self.ext not in [".csv"]:
|
|
|
|
|
|
if text_splitter is None:
|
2023-10-27 11:52:44 +08:00
|
|
|
|
text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap)
|
2023-09-13 15:42:12 +08:00
|
|
|
|
if self.text_splitter_name == "MarkdownHeaderTextSplitter":
|
|
|
|
|
|
docs = text_splitter.split_text(docs[0].page_content)
|
|
|
|
|
|
else:
|
|
|
|
|
|
docs = text_splitter.split_documents(docs)
|
2023-08-26 11:45:01 +08:00
|
|
|
|
|
2023-09-04 16:37:44 +08:00
|
|
|
|
print(f"文档切分示例:{docs[0]}")
|
2023-09-13 11:19:47 +08:00
|
|
|
|
if zh_title_enhance:
|
2023-09-18 11:00:04 +08:00
|
|
|
|
docs = func_zh_title_enhance(docs)
|
2023-09-04 16:37:44 +08:00
|
|
|
|
self.splited_docs = docs
|
|
|
|
|
|
return self.splited_docs
|
|
|
|
|
|
|
|
|
|
|
|
def file2text(
|
2023-10-27 11:52:44 +08:00
|
|
|
|
self,
|
|
|
|
|
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
|
|
|
|
|
refresh: bool = False,
|
|
|
|
|
|
chunk_size: int = CHUNK_SIZE,
|
|
|
|
|
|
chunk_overlap: int = OVERLAP_SIZE,
|
|
|
|
|
|
text_splitter: TextSplitter = None,
|
2023-09-04 16:37:44 +08:00
|
|
|
|
):
|
|
|
|
|
|
if self.splited_docs is None or refresh:
|
2023-09-08 08:55:12 +08:00
|
|
|
|
docs = self.file2docs()
|
|
|
|
|
|
self.splited_docs = self.docs2texts(docs=docs,
|
2023-09-13 11:19:47 +08:00
|
|
|
|
zh_title_enhance=zh_title_enhance,
|
2023-09-04 16:37:44 +08:00
|
|
|
|
refresh=refresh,
|
|
|
|
|
|
chunk_size=chunk_size,
|
|
|
|
|
|
chunk_overlap=chunk_overlap,
|
|
|
|
|
|
text_splitter=text_splitter)
|
|
|
|
|
|
return self.splited_docs
|
2023-08-28 13:50:35 +08:00
|
|
|
|
|
2023-09-08 08:55:12 +08:00
|
|
|
|
def file_exist(self):
|
|
|
|
|
|
return os.path.isfile(self.filepath)
|
2023-08-28 13:50:35 +08:00
|
|
|
|
|
|
|
|
|
|
def get_mtime(self):
|
|
|
|
|
|
return os.path.getmtime(self.filepath)
|
|
|
|
|
|
|
|
|
|
|
|
def get_size(self):
|
|
|
|
|
|
return os.path.getsize(self.filepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def files2docs_in_thread(
|
2023-09-05 18:35:11 +08:00
|
|
|
|
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
|
2023-09-13 11:19:47 +08:00
|
|
|
|
chunk_size: int = CHUNK_SIZE,
|
|
|
|
|
|
chunk_overlap: int = OVERLAP_SIZE,
|
|
|
|
|
|
zh_title_enhance: bool = ZH_TITLE_ENHANCE,
|
2023-08-28 13:50:35 +08:00
|
|
|
|
) -> Generator:
|
|
|
|
|
|
'''
|
2023-09-04 16:37:44 +08:00
|
|
|
|
利用多线程批量将磁盘文件转化成langchain Document.
|
2023-09-08 08:55:12 +08:00
|
|
|
|
如果传入参数是Tuple,形式为(filename, kb_name)
|
|
|
|
|
|
生成器返回值为 status, (kb_name, file_name, docs | error)
|
2023-08-28 13:50:35 +08:00
|
|
|
|
'''
|
2023-10-27 11:52:44 +08:00
|
|
|
|
|
2023-09-04 16:37:44 +08:00
|
|
|
|
def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]:
|
2023-08-28 13:50:35 +08:00
|
|
|
|
try:
|
|
|
|
|
|
return True, (file.kb_name, file.filename, file.file2text(**kwargs))
|
|
|
|
|
|
except Exception as e:
|
2023-09-08 08:55:12 +08:00
|
|
|
|
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
|
2023-09-08 20:48:31 +08:00
|
|
|
|
logger.error(f'{e.__class__.__name__}: {msg}',
|
|
|
|
|
|
exc_info=e if log_verbose else None)
|
2023-09-08 08:55:12 +08:00
|
|
|
|
return False, (file.kb_name, file.filename, msg)
|
2023-08-28 13:50:35 +08:00
|
|
|
|
|
|
|
|
|
|
kwargs_list = []
|
|
|
|
|
|
for i, file in enumerate(files):
|
|
|
|
|
|
kwargs = {}
|
2023-09-28 15:12:03 +08:00
|
|
|
|
try:
|
|
|
|
|
|
if isinstance(file, tuple) and len(file) >= 2:
|
2023-10-27 11:52:44 +08:00
|
|
|
|
filename = file[0]
|
|
|
|
|
|
kb_name = file[1]
|
2023-09-28 15:12:03 +08:00
|
|
|
|
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
|
|
|
|
|
elif isinstance(file, dict):
|
|
|
|
|
|
filename = file.pop("filename")
|
|
|
|
|
|
kb_name = file.pop("kb_name")
|
|
|
|
|
|
kwargs.update(file)
|
|
|
|
|
|
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
|
|
|
|
|
kwargs["file"] = file
|
|
|
|
|
|
kwargs["chunk_size"] = chunk_size
|
|
|
|
|
|
kwargs["chunk_overlap"] = chunk_overlap
|
|
|
|
|
|
kwargs["zh_title_enhance"] = zh_title_enhance
|
|
|
|
|
|
kwargs_list.append(kwargs)
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
yield False, (kb_name, filename, str(e))
|
2023-09-08 20:48:31 +08:00
|
|
|
|
|
2023-10-28 23:37:30 +08:00
|
|
|
|
for result in run_in_thread_pool(func=file2docs, params=kwargs_list):
|
2023-08-28 13:50:35 +08:00
|
|
|
|
yield result
|
2023-09-04 16:37:44 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
from pprint import pprint
|
|
|
|
|
|
|
2023-10-27 11:52:44 +08:00
|
|
|
|
kb_file = KnowledgeFile(
|
|
|
|
|
|
filename="/home/congyin/Code/Project_Langchain_0814/Langchain-Chatchat/knowledge_base/csv1/content/gm.csv",
|
|
|
|
|
|
knowledge_base_name="samples")
|
2023-09-04 16:37:44 +08:00
|
|
|
|
# kb_file.text_splitter_name = "RecursiveCharacterTextSplitter"
|
|
|
|
|
|
docs = kb_file.file2docs()
|
2023-10-27 11:52:44 +08:00
|
|
|
|
# pprint(docs[-1])
|