Langchain-Chatchat/chains/local_doc_qa.py

292 lines
13 KiB
Python
Raw Normal View History

2023-04-25 20:36:16 +08:00
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
2023-04-13 23:01:52 +08:00
from langchain.document_loaders import UnstructuredFileLoader
from models.chatglm_llm import ChatGLM
from configs.model_config import *
import datetime
2023-04-17 23:59:22 +08:00
from textsplitter import ChineseTextSplitter
2023-04-28 00:02:42 +08:00
from typing import List, Tuple
2023-04-25 20:36:16 +08:00
from langchain.docstore.document import Document
2023-04-28 00:02:42 +08:00
import numpy as np
from utils import torch_gc
from tqdm import tqdm
2023-05-08 23:49:57 +08:00
from pypinyin import lazy_pinyin
2023-04-13 23:01:52 +08:00
DEVICE_ = EMBEDDING_DEVICE
DEVICE_ID = "0" if torch.cuda.is_available() else None
DEVICE = f"{DEVICE_}:{DEVICE_ID}" if DEVICE_ID else DEVICE_
2023-04-13 23:01:52 +08:00
2023-05-10 17:18:20 +08:00
def load_file(filepath, sentence_size=SENTENCE_SIZE):
2023-04-25 20:36:16 +08:00
if filepath.lower().endswith(".md"):
loader = UnstructuredFileLoader(filepath, mode="elements")
docs = loader.load()
elif filepath.lower().endswith(".pdf"):
2023-04-17 23:59:22 +08:00
loader = UnstructuredFileLoader(filepath)
2023-05-10 17:18:20 +08:00
textsplitter = ChineseTextSplitter(pdf=True, sentence_size=sentence_size)
2023-04-17 23:59:22 +08:00
docs = loader.load_and_split(textsplitter)
else:
loader = UnstructuredFileLoader(filepath, mode="elements")
2023-05-10 17:18:20 +08:00
textsplitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
2023-04-17 23:59:22 +08:00
docs = loader.load_and_split(text_splitter=textsplitter)
return docs
2023-05-10 17:18:20 +08:00
def generate_prompt(related_docs: List[str], query: str,
2023-04-26 22:29:20 +08:00
prompt_template=PROMPT_TEMPLATE) -> str:
context = "\n".join([doc.page_content for doc in related_docs])
prompt = prompt_template.replace("{question}", query).replace("{context}", context)
return prompt
2023-04-25 20:36:16 +08:00
2023-04-28 00:02:42 +08:00
def seperate_list(ls: List[int]) -> List[List[int]]:
lists = []
ls1 = [ls[0]]
for i in range(1, len(ls)):
if ls[i - 1] + 1 == ls[i]:
2023-04-28 00:02:42 +08:00
ls1.append(ls[i])
else:
lists.append(ls1)
ls1 = [ls[i]]
lists.append(ls1)
return lists
def similarity_search_with_score_by_vector(
2023-05-10 17:18:20 +08:00
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
docs = []
id_set = set()
store_len = len(self.index_to_docstore_id)
for j, i in enumerate(indices[0]):
2023-05-10 17:18:20 +08:00
if i == -1 or 0 < self.score_threshold < scores[0][j]:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
2023-05-10 17:18:20 +08:00
if not self.chunk_conent:
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
doc.metadata["score"] = int(scores[0][j])
docs.append(doc)
continue
id_set.add(i)
docs_len = len(doc.page_content)
2023-05-08 23:49:57 +08:00
for k in range(1, max(i, store_len - i)):
2023-05-02 01:11:05 +08:00
break_flag = False
for l in [i + k, i - k]:
if 0 <= l < len(self.index_to_docstore_id):
_id0 = self.index_to_docstore_id[l]
2023-04-28 00:02:42 +08:00
doc0 = self.docstore.search(_id0)
if docs_len + len(doc0.page_content) > self.chunk_size:
2023-05-08 23:49:57 +08:00
break_flag = True
break
elif doc0.metadata["source"] == doc.metadata["source"]:
docs_len += len(doc0.page_content)
id_set.add(l)
2023-05-02 01:11:05 +08:00
if break_flag:
break
2023-05-10 17:18:20 +08:00
if not self.chunk_conent:
return docs
if len(id_set) == 0 and self.score_threshold > 0:
return []
id_list = sorted(list(id_set))
id_lists = seperate_list(id_list)
for id_seq in id_lists:
for id in id_seq:
if id == id_seq[0]:
_id = self.index_to_docstore_id[id]
doc = self.docstore.search(_id)
else:
_id0 = self.index_to_docstore_id[id]
doc0 = self.docstore.search(_id0)
doc.page_content += doc0.page_content
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
2023-05-06 23:26:49 +08:00
doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])
2023-05-10 17:18:20 +08:00
doc.metadata["score"] = int(doc_score)
docs.append(doc)
2023-05-04 20:48:36 +08:00
torch_gc()
return docs
2023-04-28 00:02:42 +08:00
2023-04-13 23:01:52 +08:00
class LocalDocQA:
llm: object = None
embeddings: object = None
top_k: int = VECTOR_SEARCH_TOP_K
2023-04-28 00:02:42 +08:00
chunk_size: int = CHUNK_SIZE
2023-05-10 17:18:20 +08:00
chunk_conent: bool = True
score_threshold: int = VECTOR_SEARCH_SCORE_THRESHOLD
2023-04-13 23:01:52 +08:00
def init_cfg(self,
embedding_model: str = EMBEDDING_MODEL,
embedding_device=EMBEDDING_DEVICE,
llm_history_len: int = LLM_HISTORY_LEN,
llm_model: str = LLM_MODEL,
2023-04-14 00:06:45 +08:00
llm_device=LLM_DEVICE,
top_k=VECTOR_SEARCH_TOP_K,
use_ptuning_v2: bool = USE_PTUNING_V2,
use_lora: bool = USE_LORA,
2023-04-13 23:01:52 +08:00
):
self.llm = ChatGLM()
self.llm.load_model(model_name_or_path=llm_model_dict[llm_model],
llm_device=llm_device, use_ptuning_v2=use_ptuning_v2, use_lora=use_lora)
2023-04-13 23:01:52 +08:00
self.llm.history_len = llm_history_len
2023-04-25 20:36:16 +08:00
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model],
model_kwargs={'device': embedding_device})
2023-04-14 00:06:45 +08:00
self.top_k = top_k
2023-04-13 23:01:52 +08:00
def init_knowledge_vector_store(self,
2023-04-19 21:29:20 +08:00
filepath: str or List[str],
2023-05-10 17:18:20 +08:00
vs_path: str or os.PathLike = None,
sentence_size=SENTENCE_SIZE):
2023-04-19 21:29:20 +08:00
loaded_files = []
failed_files = []
2023-04-14 00:42:21 +08:00
if isinstance(filepath, str):
if not os.path.exists(filepath):
print("路径不存在")
2023-04-13 23:01:52 +08:00
return None
2023-04-14 00:42:21 +08:00
elif os.path.isfile(filepath):
file = os.path.split(filepath)[-1]
try:
2023-05-10 17:18:20 +08:00
docs = load_file(filepath, sentence_size)
logger.info(f"{file} 已成功加载")
2023-04-19 21:29:20 +08:00
loaded_files.append(filepath)
2023-04-17 23:59:22 +08:00
except Exception as e:
2023-05-10 17:18:20 +08:00
logger.error(e)
logger.info(f"{file} 未能成功加载")
2023-04-14 00:42:21 +08:00
return None
elif os.path.isdir(filepath):
docs = []
for file in tqdm(os.listdir(filepath), desc="加载文件"):
2023-04-14 00:42:21 +08:00
fullfilepath = os.path.join(filepath, file)
try:
2023-05-10 17:18:20 +08:00
docs += load_file(fullfilepath, sentence_size)
2023-04-19 21:29:20 +08:00
loaded_files.append(fullfilepath)
2023-04-17 23:59:22 +08:00
except Exception as e:
2023-05-10 17:18:20 +08:00
logger.error(e)
failed_files.append(file)
if len(failed_files) > 0:
2023-05-10 17:18:20 +08:00
logger.info("以下文件未能成功加载:")
for file in failed_files:
2023-05-10 17:18:20 +08:00
logger.info(file, end="\n")
2023-04-14 00:42:21 +08:00
else:
2023-04-13 23:01:52 +08:00
docs = []
2023-04-14 00:42:21 +08:00
for file in filepath:
2023-04-13 23:01:52 +08:00
try:
2023-04-17 23:59:22 +08:00
docs += load_file(file)
2023-05-10 17:18:20 +08:00
logger.info(f"{file} 已成功加载")
2023-04-19 21:29:20 +08:00
loaded_files.append(file)
2023-04-17 23:59:22 +08:00
except Exception as e:
2023-05-10 17:18:20 +08:00
logger.error(e)
logger.info(f"{file} 未能成功加载")
if len(docs) > 0:
2023-05-10 17:18:20 +08:00
logger.info("文件加载完毕,正在生成向量库")
if vs_path and os.path.isdir(vs_path):
2023-04-25 20:36:16 +08:00
vector_store = FAISS.load_local(vs_path, self.embeddings)
vector_store.add_documents(docs)
2023-05-04 20:48:36 +08:00
torch_gc()
else:
if not vs_path:
2023-05-03 22:31:28 +08:00
vs_path = os.path.join(VS_ROOT_PATH,
2023-05-08 23:49:57 +08:00
f"""{"".join(lazy_pinyin(os.path.splitext(file)[0]))}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}""")
2023-05-10 17:59:28 +08:00
vector_store = FAISS.from_documents(docs, self.embeddings) # docs 为Document列表
2023-05-04 20:48:36 +08:00
torch_gc()
2023-04-13 23:01:52 +08:00
vector_store.save_local(vs_path)
return vs_path, loaded_files
2023-04-19 21:29:20 +08:00
else:
2023-05-10 17:18:20 +08:00
logger.info("文件均未成功加载,请检查依赖包或替换为其他文件再次上传。")
return None, loaded_files
2023-04-13 23:01:52 +08:00
2023-05-10 17:18:20 +08:00
def one_knowledge_add(self, vs_path, one_title, one_conent, one_content_segmentation, sentence_size):
try:
if not vs_path or not one_title or not one_conent:
logger.info("知识库添加错误,请确认知识库名字、标题、内容是否正确!")
return None, [one_title]
docs = [Document(page_content=one_conent+"\n", metadata={"source": one_title})]
if not one_content_segmentation:
text_splitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
docs = text_splitter.split_documents(docs)
if os.path.isdir(vs_path):
vector_store = FAISS.load_local(vs_path, self.embeddings)
vector_store.add_documents(docs)
else:
vector_store = FAISS.from_documents(docs, self.embeddings) ##docs 为Document列表
torch_gc()
vector_store.save_local(vs_path)
return vs_path, [one_title]
except Exception as e:
logger.error(e)
return None, [one_title]
def get_knowledge_based_answer(self, query, vs_path, chat_history=[], streaming: bool = STREAMING):
2023-04-25 20:36:16 +08:00
vector_store = FAISS.load_local(vs_path, self.embeddings)
2023-04-28 00:02:42 +08:00
FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
vector_store.chunk_size = self.chunk_size
2023-05-10 17:18:20 +08:00
vector_store.chunk_conent = self.chunk_conent
vector_store.score_threshold = self.score_threshold
related_docs_with_score = vector_store.similarity_search_with_score(query, k=self.top_k)
2023-05-04 20:48:36 +08:00
torch_gc()
2023-05-10 17:18:20 +08:00
prompt = generate_prompt(related_docs_with_score, query)
for result, history in self.llm._call(prompt=prompt,
history=chat_history,
streaming=streaming):
2023-05-04 20:48:36 +08:00
torch_gc()
2023-04-26 22:29:20 +08:00
history[-1][0] = query
response = {"query": query,
"result": result,
2023-05-10 17:18:20 +08:00
"source_documents": related_docs_with_score}
yield response, history
2023-05-04 20:48:36 +08:00
torch_gc()
2023-05-10 17:18:20 +08:00
# query 查询内容
# vs_path 知识库路径
# chunk_conent 是否启用上下文关联
# score_threshold 搜索匹配score阈值
# vector_search_top_k 搜索知识库内容条数默认搜索5条结果
# chunk_sizes 匹配单段内容的连接上下文长度
def get_knowledge_based_conent_test(self, query, vs_path, chunk_conent,
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE):
vector_store = FAISS.load_local(vs_path, self.embeddings)
FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
vector_store.chunk_conent = chunk_conent
vector_store.score_threshold = score_threshold
vector_store.chunk_size = chunk_size
related_docs_with_score = vector_store.similarity_search_with_score(query, k=vector_search_top_k)
if not related_docs_with_score:
response = {"query": query,
"source_documents": []}
return response, ""
torch_gc()
prompt = "\n".join([doc.page_content for doc in related_docs_with_score])
response = {"query": query,
"source_documents": related_docs_with_score}
return response, prompt
if __name__ == "__main__":
local_doc_qa = LocalDocQA()
local_doc_qa.init_cfg()
2023-05-02 01:11:05 +08:00
query = "本项目使用的embedding模型是什么消耗多少显存"
vs_path = "/Users/liuqian/Downloads/glm-dev/vector_store/aaa"
last_print_len = 0
for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
vs_path=vs_path,
chat_history=[],
streaming=True):
2023-05-10 17:18:20 +08:00
logger.info(resp["result"][last_print_len:], end="", flush=True)
last_print_len = len(resp["result"])
2023-05-02 01:11:05 +08:00
source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}\n\n{doc.page_content}\n\n"""
# f"""相关度:{doc.metadata['score']}\n\n"""
for inum, doc in
enumerate(resp["source_documents"])]
2023-05-10 17:18:20 +08:00
logger.info("\n\n" + "\n\n".join(source_text))
pass