调整项目结构,适配远程LLM调用生成问题。新增fastchat_openai_llm.py实现fastchat openai报文报文形式调用
This commit is contained in:
parent
f5a85a1955
commit
0f2ea29194
|
|
@ -69,11 +69,11 @@ llm_model_dict = {
|
|||
"local_model_path": None,
|
||||
"provides": "LLamaLLM"
|
||||
},
|
||||
"fastChat": {
|
||||
"name": "fastChat",
|
||||
"pretrained_model_name": "fastChat",
|
||||
"fastChatOpenAI": {
|
||||
"name": "FastChatOpenAI",
|
||||
"pretrained_model_name": "FastChatOpenAI",
|
||||
"local_model_path": None,
|
||||
"provides": "FastChatLLM"
|
||||
"provides": "FastChatOpenAILLM"
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
from .chatglm_llm import ChatGLM
|
||||
from .llama_llm import LLamaLLM
|
||||
from .moss_llm import MOSSLLM
|
||||
from .fastchat_llm import FastChatLLM
|
||||
from .fastchat_openai_llm import FastChatOpenAILLM
|
||||
|
|
|
|||
|
|
@ -2,8 +2,12 @@ from models.base.base import (
|
|||
AnswerResult,
|
||||
BaseAnswer
|
||||
)
|
||||
from models.base.remote_rpc_model import (
|
||||
RemoteRpcModel
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"AnswerResult",
|
||||
"BaseAnswer",
|
||||
"RemoteRpcModel",
|
||||
]
|
||||
|
|
|
|||
|
|
@ -0,0 +1,26 @@
|
|||
from abc import ABC, abstractmethod
|
||||
import torch
|
||||
|
||||
from models.base import (BaseAnswer,
|
||||
AnswerResult)
|
||||
|
||||
|
||||
class MultimodalAnswerResult(AnswerResult):
|
||||
image: str = None
|
||||
|
||||
|
||||
class LavisBlip2Multimodal(BaseAnswer, ABC):
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _blip2_instruct(self) -> any:
|
||||
"""Return _blip2_instruct of blip2."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _image_blip2_vis_processors(self) -> dict:
|
||||
"""Return _image_blip2_vis_processors of blip2 image processors."""
|
||||
|
||||
@abstractmethod
|
||||
def set_image_path(self, image_path: str):
|
||||
"""set set_image_path"""
|
||||
|
|
@ -0,0 +1,33 @@
|
|||
from abc import ABC, abstractmethod
|
||||
import torch
|
||||
|
||||
from models.base import (BaseAnswer,
|
||||
AnswerResult)
|
||||
|
||||
|
||||
class MultimodalAnswerResult(AnswerResult):
|
||||
image: str = None
|
||||
|
||||
|
||||
class RemoteRpcModel(BaseAnswer, ABC):
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _api_key(self) -> str:
|
||||
"""Return _api_key of client."""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def _api_base_url(self) -> str:
|
||||
"""Return _api_base of client host bash url."""
|
||||
|
||||
@abstractmethod
|
||||
def set_api_key(self, api_key: str):
|
||||
"""set set_api_key"""
|
||||
|
||||
@abstractmethod
|
||||
def set_api_base_url(self, api_base_url: str):
|
||||
"""set api_base_url"""
|
||||
@abstractmethod
|
||||
def call_model_name(self, model_name):
|
||||
"""call model name of client"""
|
||||
|
|
@ -0,0 +1,502 @@
|
|||
"""Wrapper around FastChat APIs."""
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import sys
|
||||
import warnings
|
||||
from abc import ABC
|
||||
from typing import (
|
||||
AbstractSet,
|
||||
Any,
|
||||
Callable,
|
||||
Collection,
|
||||
Dict,
|
||||
Generator,
|
||||
List,
|
||||
Literal,
|
||||
Mapping,
|
||||
Optional,
|
||||
Set,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
from pydantic import Extra, Field, root_validator
|
||||
from tenacity import (
|
||||
before_sleep_log,
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from langchain.llms.base import BaseLLM
|
||||
from langchain.schema import Generation, LLMResult
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from models.base import (RemoteRpcModel,
|
||||
AnswerResult)
|
||||
from models.loader import LoaderCheckPoint
|
||||
import requests
|
||||
import json
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _streaming_response_template() -> Dict[str, Any]:
|
||||
"""
|
||||
:return: 响应结构
|
||||
"""
|
||||
return {
|
||||
"text": "",
|
||||
"error_code": 0,
|
||||
}
|
||||
|
||||
|
||||
def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
|
||||
"""Update response from the stream response."""
|
||||
response["text"] += stream_response["text"]
|
||||
response["error_code"] += stream_response["error_code"]
|
||||
|
||||
|
||||
class BaseFastChat(BaseLLM):
|
||||
"""Wrapper around FastChat large language models."""
|
||||
|
||||
api_base_url: str = "http://localhost:21002/worker_generate_stream"
|
||||
model_name: str = "text-davinci-003"
|
||||
"""Model name to use."""
|
||||
temperature: float = 0.7
|
||||
"""What sampling temperature to use."""
|
||||
max_new_tokens: int = 200
|
||||
stop: int = 20
|
||||
batch_size: int = 20
|
||||
"""Maximum number of retries to make when generating."""
|
||||
streaming: bool = False
|
||||
"""Penalizes repeated tokens."""
|
||||
n: int = 1
|
||||
"""Whether to stream the results or not."""
|
||||
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
|
||||
"""Set of special tokens that are allowed。"""
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
|
||||
"""Set of special tokens that are not allowed。"""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.ignore
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name not in all_required_field_names:
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
logger.warning(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transfered to model_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling FastChat API."""
|
||||
normal_params = {
|
||||
"model": self.model_name,
|
||||
"prompt": '',
|
||||
"max_new_tokens": self.max_new_tokens,
|
||||
"temperature": self.temperature,
|
||||
}
|
||||
|
||||
return {**normal_params}
|
||||
|
||||
def _generate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
"""Call out to FastChat's endpoint with k unique prompts.
|
||||
|
||||
Args:
|
||||
prompts: The prompts to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
The full LLM output.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
response = fastchat.generate(["Tell me a joke."])
|
||||
"""
|
||||
# TODO: write a unit test for this
|
||||
params = self._invocation_params
|
||||
sub_prompts = self.get_sub_prompts(params, prompts)
|
||||
choices = []
|
||||
token_usage: Dict[str, int] = {}
|
||||
headers = {"User-Agent": "fastchat Client"}
|
||||
for _prompts in sub_prompts:
|
||||
|
||||
params["prompt"] = _prompts[0]
|
||||
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
|
||||
if self.streaming:
|
||||
if len(_prompts) > 1:
|
||||
raise ValueError("Cannot stream results with multiple prompts.")
|
||||
|
||||
response_template = _streaming_response_template()
|
||||
response = requests.post(
|
||||
self.api_base_url,
|
||||
headers=headers,
|
||||
json=params,
|
||||
stream=True,
|
||||
)
|
||||
for stream_resp in response.iter_lines(
|
||||
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||||
):
|
||||
if stream_resp:
|
||||
data = json.loads(stream_resp.decode("utf-8"))
|
||||
skip_echo_len = len(_prompts[0])
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
data["text"] = output
|
||||
self.callback_manager.on_llm_new_token(
|
||||
output,
|
||||
verbose=self.verbose,
|
||||
logprobs=data["error_code"],
|
||||
)
|
||||
_update_response(response_template, data)
|
||||
choices.append(response_template)
|
||||
else:
|
||||
response_template = _streaming_response_template()
|
||||
response = requests.post(
|
||||
self.api_base_url,
|
||||
headers=headers,
|
||||
json=params,
|
||||
stream=True,
|
||||
)
|
||||
for stream_resp in response.iter_lines(
|
||||
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||||
):
|
||||
if stream_resp:
|
||||
data = json.loads(stream_resp.decode("utf-8"))
|
||||
skip_echo_len = len(_prompts[0])
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
data["text"] = output
|
||||
_update_response(response_template, data)
|
||||
|
||||
choices.append(response_template)
|
||||
|
||||
return self.create_llm_result(choices, prompts, token_usage)
|
||||
|
||||
async def _agenerate(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> LLMResult:
|
||||
"""Call out to FastChat's endpoint async with k unique prompts."""
|
||||
params = self._invocation_params
|
||||
sub_prompts = self.get_sub_prompts(params, prompts)
|
||||
choices = []
|
||||
token_usage: Dict[str, int] = {}
|
||||
|
||||
headers = {"User-Agent": "fastchat Client"}
|
||||
for _prompts in sub_prompts:
|
||||
|
||||
params["prompt"] = _prompts[0]
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
|
||||
if self.streaming:
|
||||
if len(_prompts) > 1:
|
||||
raise ValueError("Cannot stream results with multiple prompts.")
|
||||
|
||||
response_template = _streaming_response_template()
|
||||
response = requests.post(
|
||||
self.api_base_url,
|
||||
headers=headers,
|
||||
json=params,
|
||||
stream=True,
|
||||
)
|
||||
for stream_resp in response.iter_lines(
|
||||
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||||
):
|
||||
if stream_resp:
|
||||
data = json.loads(stream_resp.decode("utf-8"))
|
||||
skip_echo_len = len(_prompts[0])
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
data["text"] = output
|
||||
self.callback_manager.on_llm_new_token(
|
||||
output,
|
||||
verbose=self.verbose,
|
||||
logprobs=data["error_code"],
|
||||
)
|
||||
_update_response(response_template, data)
|
||||
choices.append(response_template)
|
||||
else:
|
||||
response_template = _streaming_response_template()
|
||||
response = requests.post(
|
||||
self.api_base_url,
|
||||
headers=headers,
|
||||
json=params,
|
||||
stream=True,
|
||||
)
|
||||
for stream_resp in response.iter_lines(
|
||||
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||||
):
|
||||
if stream_resp:
|
||||
data = json.loads(stream_resp.decode("utf-8"))
|
||||
skip_echo_len = len(_prompts[0])
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
data["text"] = output
|
||||
_update_response(response_template, data)
|
||||
|
||||
choices.append(response_template)
|
||||
|
||||
return self.create_llm_result(choices, prompts, token_usage)
|
||||
|
||||
def get_sub_prompts(
|
||||
self,
|
||||
params: Dict[str, Any],
|
||||
prompts: List[str],
|
||||
) -> List[List[str]]:
|
||||
"""Get the sub prompts for llm call."""
|
||||
if params["max_new_tokens"] == -1:
|
||||
if len(prompts) != 1:
|
||||
raise ValueError(
|
||||
"max_new_tokens set to -1 not supported for multiple inputs."
|
||||
)
|
||||
params["max_new_tokens"] = self.max_new_tokens_for_prompt(prompts[0])
|
||||
# append pload
|
||||
sub_prompts = [
|
||||
prompts[i: i + self.batch_size]
|
||||
for i in range(0, len(prompts), self.batch_size)
|
||||
]
|
||||
|
||||
return sub_prompts
|
||||
|
||||
def create_llm_result(
|
||||
self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
|
||||
) -> LLMResult:
|
||||
"""Create the LLMResult from the choices and prompts."""
|
||||
generations = []
|
||||
for i, _ in enumerate(prompts):
|
||||
sub_choices = choices[i * self.n: (i + 1) * self.n]
|
||||
generations.append(
|
||||
[
|
||||
Generation(
|
||||
text=choice["text"],
|
||||
generation_info=dict(
|
||||
finish_reason='over',
|
||||
logprobs=choice["text"],
|
||||
),
|
||||
)
|
||||
for choice in sub_choices
|
||||
]
|
||||
)
|
||||
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
|
||||
return LLMResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
def stream(self, prompt: str, stop: Optional[List[str]] = None) -> Generator:
|
||||
"""Call FastChat with streaming flag and return the resulting generator.
|
||||
|
||||
BETA: this is a beta feature while we figure out the right abstraction.
|
||||
Once that happens, this interface could change.
|
||||
|
||||
Args:
|
||||
prompt: The prompts to pass into the model.
|
||||
stop: Optional list of stop words to use when generating.
|
||||
|
||||
Returns:
|
||||
A generator representing the stream of tokens from OpenAI.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
generator = fastChat.stream("Tell me a joke.")
|
||||
for token in generator:
|
||||
yield token
|
||||
"""
|
||||
params = self._invocation_params
|
||||
params["prompt"] = prompt
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
|
||||
headers = {"User-Agent": "fastchat Client"}
|
||||
response = requests.post(
|
||||
self.api_base_url,
|
||||
headers=headers,
|
||||
json=params,
|
||||
stream=True,
|
||||
)
|
||||
for stream_resp in response.iter_lines(
|
||||
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
||||
):
|
||||
if stream_resp:
|
||||
data = json.loads(stream_resp.decode("utf-8"))
|
||||
skip_echo_len = len(prompt)
|
||||
output = data["text"][skip_echo_len:].strip()
|
||||
data["text"] = output
|
||||
yield data
|
||||
|
||||
@property
|
||||
def _invocation_params(self) -> Dict[str, Any]:
|
||||
"""Get the parameters used to invoke the model."""
|
||||
return self._default_params
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "fastChat"
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
"""Calculate num tokens with tiktoken package."""
|
||||
# tiktoken NOT supported for Python < 3.8
|
||||
if sys.version_info[1] < 8:
|
||||
return super().get_num_tokens(text)
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to calculate get_num_tokens. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
enc = tiktoken.encoding_for_model(self.model_name)
|
||||
|
||||
tokenized_text = enc.encode(
|
||||
text,
|
||||
allowed_special=self.allowed_special,
|
||||
disallowed_special=self.disallowed_special,
|
||||
)
|
||||
|
||||
# calculate the number of tokens in the encoded text
|
||||
return len(tokenized_text)
|
||||
|
||||
def modelname_to_contextsize(self, modelname: str) -> int:
|
||||
"""Calculate the maximum number of tokens possible to generate for a model.
|
||||
|
||||
Args:
|
||||
modelname: The modelname we want to know the context size for.
|
||||
|
||||
Returns:
|
||||
The maximum context size
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
max_new_tokens = openai.modelname_to_contextsize("text-davinci-003")
|
||||
"""
|
||||
model_token_mapping = {
|
||||
"vicuna-13b": 2049,
|
||||
"koala": 2049,
|
||||
"dolly-v2": 2049,
|
||||
"oasst": 2049,
|
||||
"stablelm": 2049,
|
||||
}
|
||||
|
||||
context_size = model_token_mapping.get(modelname, None)
|
||||
|
||||
if context_size is None:
|
||||
raise ValueError(
|
||||
f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
|
||||
"Known models are: " + ", ".join(model_token_mapping.keys())
|
||||
)
|
||||
|
||||
return context_size
|
||||
|
||||
def max_new_tokens_for_prompt(self, prompt: str) -> int:
|
||||
"""Calculate the maximum number of tokens possible to generate for a prompt.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
|
||||
Returns:
|
||||
The maximum number of tokens to generate for a prompt.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
max_new_tokens = openai.max_token_for_prompt("Tell me a joke.")
|
||||
"""
|
||||
num_tokens = self.get_num_tokens(prompt)
|
||||
|
||||
# get max context size for model by name
|
||||
max_size = self.modelname_to_contextsize(self.model_name)
|
||||
return max_size - num_tokens
|
||||
|
||||
|
||||
class FastChatAPILLM(RemoteRpcModel, BaseFastChat, ABC):
|
||||
"""Wrapper around FastChat large language models.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
openai = FastChat(model_name="vicuna")
|
||||
"""
|
||||
checkPoint: LoaderCheckPoint = None
|
||||
|
||||
history_len: int = 10
|
||||
|
||||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||||
super().__init__()
|
||||
self.checkPoint = checkPoint
|
||||
|
||||
@property
|
||||
def _invocation_params(self) -> Dict[str, Any]:
|
||||
return {**{"model": self.model_name}, **super()._invocation_params}
|
||||
|
||||
@property
|
||||
def _check_point(self) -> LoaderCheckPoint:
|
||||
return self.checkPoint
|
||||
|
||||
@property
|
||||
def _history_len(self) -> int:
|
||||
return self.history_len
|
||||
|
||||
def set_history_len(self, history_len: int = 10) -> None:
|
||||
self.history_len = history_len
|
||||
|
||||
@property
|
||||
def _api_key(self) -> str:
|
||||
pass
|
||||
|
||||
@property
|
||||
def _api_base_url(self) -> str:
|
||||
return self.api_base_url
|
||||
|
||||
def set_api_key(self, api_key: str):
|
||||
pass
|
||||
|
||||
def set_api_base_url(self, api_base_url: str):
|
||||
self.api_base_url = api_base_url
|
||||
|
||||
def call_model_name(self, model_name):
|
||||
self.model_name = model_name
|
||||
|
||||
def generatorAnswer(self, prompt: str,
|
||||
history: List[List[str]] = [],
|
||||
streaming: bool = False):
|
||||
generator = self.stream("Tell me a joke.")
|
||||
for token in generator:
|
||||
yield token
|
||||
|
||||
history += [[prompt, token["text"]]]
|
||||
answer_result = AnswerResult()
|
||||
answer_result.history = history
|
||||
answer_result.llm_output = {"answer": token["text"]}
|
||||
yield answer_result
|
||||
|
|
@ -1,51 +0,0 @@
|
|||
from abc import ABC
|
||||
import requests
|
||||
from typing import Optional, List
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
from models.loader import LoaderCheckPoint
|
||||
from models.base import (BaseAnswer,
|
||||
AnswerResult)
|
||||
|
||||
|
||||
class FastChatLLM(BaseAnswer, LLM, ABC):
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.01
|
||||
top_p = 0.9
|
||||
checkPoint: LoaderCheckPoint = None
|
||||
# history = []
|
||||
history_len: int = 10
|
||||
|
||||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||||
super().__init__()
|
||||
self.checkPoint = checkPoint
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "FastChat"
|
||||
|
||||
@property
|
||||
def _check_point(self) -> LoaderCheckPoint:
|
||||
return self.checkPoint
|
||||
|
||||
@property
|
||||
def _history_len(self) -> int:
|
||||
return self.history_len
|
||||
|
||||
def set_history_len(self, history_len: int = 10) -> None:
|
||||
self.history_len = history_len
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
pass
|
||||
|
||||
def generatorAnswer(self, prompt: str,
|
||||
history: List[List[str]] = [],
|
||||
streaming: bool = False):
|
||||
|
||||
response = "fastchat 响应结果"
|
||||
history += [[prompt, response]]
|
||||
answer_result = AnswerResult()
|
||||
answer_result.history = history
|
||||
answer_result.llm_output = {"answer": response}
|
||||
|
||||
yield answer_result
|
||||
|
|
@ -0,0 +1,119 @@
|
|||
from abc import ABC
|
||||
import requests
|
||||
from typing import Optional, List
|
||||
from langchain.llms.base import LLM
|
||||
|
||||
from models.loader import LoaderCheckPoint
|
||||
from models.base import (RemoteRpcModel,
|
||||
AnswerResult)
|
||||
from typing import (
|
||||
Collection,
|
||||
Dict
|
||||
)
|
||||
|
||||
|
||||
def _build_message_template() -> Dict[str, str]:
|
||||
"""
|
||||
:return: 结构
|
||||
"""
|
||||
return {
|
||||
"role": "",
|
||||
"content": "",
|
||||
}
|
||||
|
||||
|
||||
class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
|
||||
api_base_url: str = "http://localhost:8000/v1"
|
||||
model_name: str = "chatglm-6b"
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.01
|
||||
top_p = 0.9
|
||||
checkPoint: LoaderCheckPoint = None
|
||||
history = []
|
||||
history_len: int = 10
|
||||
|
||||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||||
super().__init__()
|
||||
self.checkPoint = checkPoint
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "FastChat"
|
||||
|
||||
@property
|
||||
def _check_point(self) -> LoaderCheckPoint:
|
||||
return self.checkPoint
|
||||
|
||||
@property
|
||||
def _history_len(self) -> int:
|
||||
return self.history_len
|
||||
|
||||
def set_history_len(self, history_len: int = 10) -> None:
|
||||
self.history_len = history_len
|
||||
|
||||
@property
|
||||
def _api_key(self) -> str:
|
||||
pass
|
||||
|
||||
@property
|
||||
def _api_base_url(self) -> str:
|
||||
return self.api_base_url
|
||||
|
||||
def set_api_key(self, api_key: str):
|
||||
pass
|
||||
|
||||
def set_api_base_url(self, api_base_url: str):
|
||||
self.api_base_url = api_base_url
|
||||
|
||||
def call_model_name(self, model_name):
|
||||
self.model_name = model_name
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
pass
|
||||
|
||||
# 将历史对话数组转换为文本格式
|
||||
def build_message_list(self, query) -> Collection[Dict[str, str]]:
|
||||
build_message_list: Collection[Dict[str, str]] = []
|
||||
history = self.history[-self.history_len:] if self.history_len > 0 else []
|
||||
for i, (old_query, response) in enumerate(history):
|
||||
user_build_message = _build_message_template()
|
||||
user_build_message['role'] = 'user'
|
||||
user_build_message['content'] = old_query
|
||||
system_build_message = _build_message_template()
|
||||
system_build_message['role'] = 'system'
|
||||
system_build_message['content'] = response
|
||||
build_message_list.append(user_build_message)
|
||||
build_message_list.append(system_build_message)
|
||||
|
||||
user_build_message = _build_message_template()
|
||||
user_build_message['role'] = 'user'
|
||||
user_build_message['content'] = query
|
||||
build_message_list.append(user_build_message)
|
||||
return build_message_list
|
||||
|
||||
def generatorAnswer(self, prompt: str,
|
||||
history: List[List[str]] = [],
|
||||
streaming: bool = False):
|
||||
|
||||
try:
|
||||
import openai
|
||||
# Not support yet
|
||||
openai.api_key = "EMPTY"
|
||||
openai.api_base = self.api_base_url
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
# create a chat completion
|
||||
completion = openai.ChatCompletion.create(
|
||||
model=self.model_name,
|
||||
messages=self.build_message_list(prompt)
|
||||
)
|
||||
|
||||
self.history += [[prompt, completion.choices[0].message.content]]
|
||||
answer_result = AnswerResult()
|
||||
answer_result.history = self.history
|
||||
answer_result.llm_output = {"answer": completion.choices[0].message.content}
|
||||
|
||||
yield answer_result
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
import sys
|
||||
|
||||
from typing import Any
|
||||
from models.loader.args import parser
|
||||
from models.loader import LoaderCheckPoint
|
||||
from configs.model_config import (llm_model_dict, LLM_MODEL)
|
||||
|
|
@ -8,7 +8,7 @@ from models.base import BaseAnswer
|
|||
loaderCheckPoint: LoaderCheckPoint = None
|
||||
|
||||
|
||||
def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_v2: bool = False) -> BaseAnswer:
|
||||
def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_v2: bool = False) -> Any:
|
||||
"""
|
||||
init llm_model_ins LLM
|
||||
:param llm_model: model_name
|
||||
|
|
@ -34,7 +34,7 @@ def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_
|
|||
|
||||
loaderCheckPoint.model_path = llm_model_info["local_model_path"]
|
||||
|
||||
if 'fastChat' in loaderCheckPoint.model_name:
|
||||
if 'FastChat' in loaderCheckPoint.model_name:
|
||||
loaderCheckPoint.unload_model()
|
||||
else:
|
||||
loaderCheckPoint.reload_model()
|
||||
|
|
|
|||
|
|
@ -0,0 +1,40 @@
|
|||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../../')
|
||||
import asyncio
|
||||
from argparse import Namespace
|
||||
from models.loader.args import parser
|
||||
from models.loader import LoaderCheckPoint
|
||||
|
||||
|
||||
import models.shared as shared
|
||||
|
||||
|
||||
|
||||
async def dispatch(args: Namespace):
|
||||
args_dict = vars(args)
|
||||
|
||||
shared.loaderCheckPoint = LoaderCheckPoint(args_dict)
|
||||
|
||||
llm_model_ins = shared.loaderLLM()
|
||||
llm_model_ins.set_api_base_url("http://localhost:8000/v1")
|
||||
llm_model_ins.call_model_name("chatglm-6b")
|
||||
history = [
|
||||
("which city is this?", "tokyo"),
|
||||
("why?", "she's japanese"),
|
||||
|
||||
]
|
||||
for answer_result in llm_model_ins.generatorAnswer(prompt="她在做什么? ", history=history,
|
||||
streaming=False):
|
||||
resp = answer_result.llm_output["answer"]
|
||||
|
||||
print(resp)
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = None
|
||||
args = parser.parse_args(args=['--model-dir', '/media/checkpoint/', '--model', 'fastChatOpenAI', '--no-remote-model'])
|
||||
|
||||
loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(loop)
|
||||
loop.run_until_complete(dispatch(args))
|
||||
|
|
@ -1,14 +1,12 @@
|
|||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../')
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../../')
|
||||
import asyncio
|
||||
from argparse import Namespace
|
||||
from models.loader.args import parser
|
||||
from models.loader import LoaderCheckPoint
|
||||
|
||||
from langchain.agents import initialize_agent, Tool
|
||||
from langchain.agents import AgentType
|
||||
|
||||
import models.shared as shared
|
||||
|
||||
Loading…
Reference in New Issue