use RetrievalQA instead of ChatVectorDBChain
This commit is contained in:
parent
2240ed1ec2
commit
12ee17f3b3
|
|
@ -16,28 +16,14 @@ def torch_gc():
|
|||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"/Users/liuqian/Downloads/ChatGLM-6B/chatglm_hf_model",
|
||||
# "THUDM/chatglm-6b",
|
||||
trust_remote_code=True
|
||||
)
|
||||
model = (
|
||||
AutoModel.from_pretrained(
|
||||
"/Users/liuqian/Downloads/ChatGLM-6B/chatglm_hf_model",
|
||||
# "THUDM/chatglm-6b",
|
||||
trust_remote_code=True)
|
||||
.float()
|
||||
.to("mps")
|
||||
# .half()
|
||||
# .cuda()
|
||||
)
|
||||
|
||||
|
||||
class ChatGLM(LLM):
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.1
|
||||
top_p = 0.9
|
||||
history = []
|
||||
tokenizer: object = None
|
||||
model: object = None
|
||||
history_len: int = 10
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
@ -49,31 +35,29 @@ class ChatGLM(LLM):
|
|||
def _call(self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None) -> str:
|
||||
response, updated_history = model.chat(
|
||||
tokenizer,
|
||||
response, _ = self.model.chat(
|
||||
self.tokenizer,
|
||||
prompt,
|
||||
history=self.history,
|
||||
history=self.history[-self.history_len:],
|
||||
max_length=self.max_token,
|
||||
temperature=self.temperature,
|
||||
)
|
||||
torch_gc()
|
||||
print("history: ", self.history)
|
||||
if stop is not None:
|
||||
response = enforce_stop_tokens(response, stop)
|
||||
self.history = updated_history
|
||||
self.history = self.history+[[None, response]]
|
||||
return response
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
tokenized_text = tokenizer.tokenize(text)
|
||||
return len(tokenized_text)
|
||||
|
||||
if __name__ == "__main__":
|
||||
history = []
|
||||
while True:
|
||||
query = input("Input your question 请输入问题:")
|
||||
resp, history = model.chat(tokenizer,
|
||||
query,
|
||||
history=history,
|
||||
temperature=0.01,
|
||||
max_length=100000)
|
||||
print(resp)
|
||||
def load_model(self,
|
||||
model_name_or_path: str = "THUDM/chatglm-6b"):
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True
|
||||
)
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True)
|
||||
.half()
|
||||
.cuda()
|
||||
)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,4 @@
|
|||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.chains import ChatVectorDBChain, ConversationalRetrievalChain
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
SystemMessagePromptTemplate,
|
||||
|
|
@ -10,19 +9,34 @@ from langchain.vectorstores import FAISS
|
|||
from langchain.document_loaders import UnstructuredFileLoader
|
||||
from chatglm_llm import ChatGLM
|
||||
|
||||
# Global Parameters
|
||||
EMBEDDING_MODEL = "text2vec"
|
||||
VECTOR_SEARCH_TOP_K = 6
|
||||
LLM_MODEL = "chatglm-6b"
|
||||
LLM_HISTORY_LEN = 3
|
||||
|
||||
# Show reply with source text from input document
|
||||
REPLY_WITH_SOURCE = True
|
||||
|
||||
|
||||
embedding_model_dict = {
|
||||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||||
"text2vec": "/Users/liuqian/Downloads/ChatGLM-6B/chatglm_embedding"#"GanymedeNil/text2vec-large-chinese"
|
||||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||||
}
|
||||
|
||||
|
||||
llm_model_dict = {
|
||||
"chatglm-6b": "THUDM/chatglm-6b",
|
||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
||||
"chatglm-6b-int4-qe":"THUDM/chatglm-6b-int4-qe",
|
||||
}
|
||||
|
||||
chatglm = ChatGLM()
|
||||
|
||||
chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL])
|
||||
chatglm.history_len = LLM_HISTORY_LEN
|
||||
|
||||
def init_knowledge_vector_store(filepath):
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict["text2vec"], )
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL], )
|
||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||
docs = loader.load()
|
||||
|
||||
|
|
@ -43,28 +57,17 @@ def get_knowledge_based_answer(query, vector_store, chat_history=[]):
|
|||
]
|
||||
prompt = ChatPromptTemplate.from_messages(messages)
|
||||
|
||||
condese_propmt_template = """任务: 给一段对话和一个后续问题,将后续问题改写成一个独立的问题。确保问题是完整的,没有模糊的指代。
|
||||
----------------
|
||||
聊天记录:
|
||||
{chat_history}
|
||||
----------------
|
||||
后续问题:{question}
|
||||
----------------
|
||||
改写后的独立、完整的问题:"""
|
||||
new_question_prompt = PromptTemplate.from_template(condese_propmt_template)
|
||||
chatglm.history = chat_history
|
||||
knowledge_chain = ConversationalRetrievalChain.from_llm(
|
||||
knowledge_chain = RetrievalQA.from_llm(
|
||||
llm=chatglm,
|
||||
retriever=vector_store.as_retriever(),
|
||||
qa_prompt=prompt,
|
||||
condense_question_prompt=new_question_prompt,
|
||||
retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}),
|
||||
prompt=prompt
|
||||
)
|
||||
|
||||
knowledge_chain.return_source_documents = True
|
||||
# knowledge_chain.top_k_docs_for_context = 10
|
||||
knowledge_chain.max_tokens_limit = 10000
|
||||
|
||||
result = knowledge_chain({"question": query, "chat_history": chat_history})
|
||||
result = knowledge_chain({"query": query})
|
||||
chatglm.history[-1][0] = query
|
||||
return result, chatglm.history
|
||||
|
||||
|
||||
|
|
@ -77,4 +80,7 @@ if __name__ == "__main__":
|
|||
resp, history = get_knowledge_based_answer(query=query,
|
||||
vector_store=vector_store,
|
||||
chat_history=history)
|
||||
print(resp)
|
||||
if REPLY_WITH_SOURCE:
|
||||
print(resp)
|
||||
else:
|
||||
print(resp["result"])
|
||||
|
|
|
|||
Loading…
Reference in New Issue