Merge branch 'dev_fastchat' of github.com:chatchat-space/langchain-ChatGLM into dev_fastchat
This commit is contained in:
commit
18a94fcf45
|
|
@ -4,3 +4,4 @@ logs
|
|||
.idea/
|
||||
__pycache__/
|
||||
knowledge_base/
|
||||
configs/model_config.py
|
||||
|
|
@ -171,7 +171,7 @@ embedding_model_dict = {
|
|||
}
|
||||
|
||||
# 选用的 Embedding 名称
|
||||
EMBEDDING_MODEL = "text2vec"
|
||||
EMBEDDING_MODEL = "m3e-base"
|
||||
|
||||
# Embedding 模型运行设备
|
||||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
|
@ -196,6 +196,12 @@ llm_model_dict = {
|
|||
"api_key": "EMPTY"
|
||||
},
|
||||
|
||||
"chatglm2-6b-32k": {
|
||||
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
|
||||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_key": "EMPTY"
|
||||
},
|
||||
|
||||
"vicuna-13b-hf": {
|
||||
"local_model_path": "",
|
||||
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||
|
|
@ -246,3 +252,16 @@ PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回
|
|||
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||||
# is open cross domain
|
||||
OPEN_CROSS_DOMAIN = False
|
||||
|
||||
# Bing 搜索必备变量
|
||||
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
|
||||
# 具体申请方式请见
|
||||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
|
||||
# 使用python创建bing api 搜索实例详见:
|
||||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
|
||||
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
|
||||
# 注意不是bing Webmaster Tools的api key,
|
||||
|
||||
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
|
||||
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
|
||||
BING_SUBSCRIPTION_KEY = ""
|
||||
|
|
@ -18,3 +18,4 @@ unstructured[local-inference]
|
|||
|
||||
streamlit>=1.25.0
|
||||
streamlit-option-menu
|
||||
streamlit-chatbox>=1.1.0
|
||||
|
|
|
|||
|
|
@ -7,8 +7,9 @@ import argparse
|
|||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from starlette.responses import RedirectResponse, StreamingResponse
|
||||
from server.chat import chat, knowledge_base_chat, openai_chat
|
||||
from starlette.responses import RedirectResponse
|
||||
from server.chat import (chat, knowledge_base_chat, openai_chat,
|
||||
bing_search_chat, duckduckgo_search_chat)
|
||||
from server.knowledge_base import (list_kbs, create_kb, delete_kb,
|
||||
list_docs, upload_doc, delete_doc, update_doc)
|
||||
from server.utils import BaseResponse, ListResponse
|
||||
|
|
@ -50,7 +51,13 @@ def create_app():
|
|||
tags=["Chat"],
|
||||
summary="与知识库对话")(knowledge_base_chat)
|
||||
|
||||
# app.post("/chat/bing_search_chat", tags=["Chat"], summary="与Bing搜索对话")(bing_search_chat)
|
||||
app.post("/chat/bing_search_chat",
|
||||
tags=["Chat"],
|
||||
summary="与Bing搜索对话")(bing_search_chat)
|
||||
|
||||
app.post("/chat/duckduckgo_search_chat",
|
||||
tags=["Chat"],
|
||||
summary="与DuckDuckGo搜索对话")(duckduckgo_search_chat)
|
||||
|
||||
app.get("/knowledge_base/list_knowledge_bases",
|
||||
tags=["Knowledge Base Management"],
|
||||
|
|
|
|||
|
|
@ -1,3 +1,5 @@
|
|||
from .chat import chat
|
||||
from .knowledge_base_chat import knowledge_base_chat
|
||||
from .openai_chat import openai_chat
|
||||
from .duckduckgo_search_chat import duckduckgo_search_chat
|
||||
from .bing_search_chat import bing_search_chat
|
||||
|
|
|
|||
|
|
@ -1,3 +0,0 @@
|
|||
# TODO: 完成 bing_chat agent 接口实现
|
||||
def bing_chat():
|
||||
pass
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
from langchain.utilities import BingSearchAPIWrapper
|
||||
from configs.model_config import BING_SEARCH_URL, BING_SUBSCRIPTION_KEY
|
||||
from fastapi import Body
|
||||
from fastapi.responses import StreamingResponse
|
||||
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE)
|
||||
from server.chat.utils import wrap_done
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain import LLMChain
|
||||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||||
from typing import AsyncIterable
|
||||
import asyncio
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
def bing_search(text, result_len=3):
|
||||
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
|
||||
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
|
||||
"title": "env info is not found",
|
||||
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
|
||||
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
|
||||
bing_search_url=BING_SEARCH_URL)
|
||||
return search.results(text, result_len)
|
||||
|
||||
|
||||
def search_result2docs(search_results):
|
||||
docs = []
|
||||
for result in search_results:
|
||||
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
|
||||
metadata={"source": result["link"] if "link" in result.keys() else "",
|
||||
"filename": result["title"] if "title" in result.keys() else ""})
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def bing_search_chat(query: str = Body(..., description="用户输入", example="你好"),
|
||||
):
|
||||
async def bing_search_chat_iterator(query: str,
|
||||
) -> AsyncIterable[str]:
|
||||
callback = AsyncIteratorCallbackHandler()
|
||||
model = ChatOpenAI(
|
||||
streaming=True,
|
||||
verbose=True,
|
||||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
)
|
||||
|
||||
results = bing_search(query, result_len=3)
|
||||
docs = search_result2docs(results)
|
||||
context = "\n".join([doc.page_content for doc in docs])
|
||||
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
||||
|
||||
chain = LLMChain(prompt=prompt, llm=model)
|
||||
|
||||
# Begin a task that runs in the background.
|
||||
task = asyncio.create_task(wrap_done(
|
||||
chain.acall({"context": context, "question": query}),
|
||||
callback.done),
|
||||
)
|
||||
|
||||
async for token in callback.aiter():
|
||||
# Use server-sent-events to stream the response
|
||||
yield token
|
||||
await task
|
||||
|
||||
return StreamingResponse(bing_search_chat_iterator(query), media_type="text/event-stream")
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
from langchain.utilities import DuckDuckGoSearchAPIWrapper
|
||||
from fastapi import Body
|
||||
from fastapi.responses import StreamingResponse
|
||||
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE)
|
||||
from server.chat.utils import wrap_done
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain import LLMChain
|
||||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||||
from typing import AsyncIterable
|
||||
import asyncio
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
|
||||
def duckduckgo_search(text, result_len=3):
|
||||
search = DuckDuckGoSearchAPIWrapper()
|
||||
return search.results(text, result_len)
|
||||
|
||||
|
||||
def search_result2docs(search_results):
|
||||
docs = []
|
||||
for result in search_results:
|
||||
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
|
||||
metadata={"source": result["link"] if "link" in result.keys() else "",
|
||||
"filename": result["title"] if "title" in result.keys() else ""})
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def duckduckgo_search_chat(query: str = Body(..., description="用户输入", example="你好"),
|
||||
):
|
||||
async def duckduckgo_search_chat_iterator(query: str,
|
||||
) -> AsyncIterable[str]:
|
||||
callback = AsyncIteratorCallbackHandler()
|
||||
model = ChatOpenAI(
|
||||
streaming=True,
|
||||
verbose=True,
|
||||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
)
|
||||
|
||||
results = duckduckgo_search(query, result_len=3)
|
||||
docs = search_result2docs(results)
|
||||
context = "\n".join([doc.page_content for doc in docs])
|
||||
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
||||
|
||||
chain = LLMChain(prompt=prompt, llm=model)
|
||||
|
||||
# Begin a task that runs in the background.
|
||||
task = asyncio.create_task(wrap_done(
|
||||
chain.acall({"context": context, "question": query}),
|
||||
callback.done),
|
||||
)
|
||||
|
||||
async for token in callback.aiter():
|
||||
# Use server-sent-events to stream the response
|
||||
yield token
|
||||
await task
|
||||
|
||||
return StreamingResponse(duckduckgo_search_chat_iterator(query), media_type="text/event-stream")
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
|
||||
from multiprocessing import Process, Queue
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
||||
from configs.model_config import llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, logger
|
||||
import asyncio
|
||||
|
|
@ -32,7 +32,7 @@ def create_controller_app(
|
|||
|
||||
controller = Controller(dispatch_method)
|
||||
sys.modules["fastchat.serve.controller"].controller = controller
|
||||
#todo 替换fastchat的日志文件
|
||||
# todo 替换fastchat的日志文件
|
||||
sys.modules["fastchat.serve.controller"].logger = logger
|
||||
logger.info(f"controller dispatch method: {dispatch_method}")
|
||||
return app
|
||||
|
|
@ -201,9 +201,6 @@ def run_openai_api(q):
|
|||
uvicorn.run(app, host=host_ip, port=openai_api_port)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.info(llm_model_dict[LLM_MODEL])
|
||||
model_path = llm_model_dict[LLM_MODEL]["local_model_path"]
|
||||
|
|
@ -245,7 +242,6 @@ if __name__ == "__main__":
|
|||
# model_worker_process.join()
|
||||
openai_api_process.join()
|
||||
|
||||
|
||||
# 服务启动后接口调用示例:
|
||||
# import openai
|
||||
# openai.api_key = "EMPTY" # Not support yet
|
||||
|
|
|
|||
58
webui.py
58
webui.py
|
|
@ -1,67 +1,21 @@
|
|||
import streamlit as st
|
||||
from webui_pages.utils import *
|
||||
from streamlit_option_menu import option_menu
|
||||
import openai
|
||||
|
||||
def dialogue_page():
|
||||
with st.sidebar:
|
||||
dialogue_mode = st.radio("请选择对话模式",
|
||||
["LLM 对话",
|
||||
"知识库问答",
|
||||
"Bing 搜索问答"])
|
||||
if dialogue_mode == "知识库问答":
|
||||
selected_kb = st.selectbox("请选择知识库:", ["知识库1", "知识库2"])
|
||||
with st.expander(f"{selected_kb} 中已存储文件"):
|
||||
st.write("123")
|
||||
|
||||
# Display chat messages from history on app rerun
|
||||
for message in st.session_state.messages:
|
||||
with st.chat_message(message["role"]):
|
||||
st.markdown(message["content"])
|
||||
|
||||
if prompt := st.chat_input("What is up?"):
|
||||
st.session_state.messages.append({"role": "user", "content": prompt})
|
||||
with st.chat_message("user"):
|
||||
st.markdown(prompt)
|
||||
|
||||
with st.chat_message("assistant"):
|
||||
message_placeholder = st.empty()
|
||||
full_response = ""
|
||||
for response in openai.ChatCompletion.create(
|
||||
model=OPENAI_MODEL,
|
||||
messages=[
|
||||
{"role": m["role"], "content": m["content"]}
|
||||
for m in st.session_state.messages
|
||||
],
|
||||
stream=True,
|
||||
):
|
||||
full_response += response.choices[0].delta.get("content", "")
|
||||
message_placeholder.markdown(full_response + "▌")
|
||||
message_placeholder.markdown(full_response)
|
||||
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
||||
|
||||
|
||||
def knowledge_base_edit_page():
|
||||
pass
|
||||
|
||||
|
||||
def config_page():
|
||||
pass
|
||||
from webui_pages import *
|
||||
|
||||
api = ApiRequest()
|
||||
|
||||
if __name__ == "__main__":
|
||||
st.set_page_config("langchain-chatglm WebUI")
|
||||
|
||||
if "messages" not in st.session_state:
|
||||
st.session_state.messages = []
|
||||
|
||||
pages = {"对话": {"icon": "chat",
|
||||
"func": dialogue_page,
|
||||
},
|
||||
"知识库管理": {"icon": "database-fill-gear",
|
||||
"func": knowledge_base_edit_page,
|
||||
"func": knowledge_base_page,
|
||||
},
|
||||
"模型配置": {"icon": "gear",
|
||||
"func": config_page,
|
||||
"func": model_config_page,
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -72,4 +26,4 @@ if __name__ == "__main__":
|
|||
menu_icon="chat-quote",
|
||||
default_index=0)
|
||||
|
||||
pages[selected_page]["func"]()
|
||||
pages[selected_page]["func"](api)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,3 @@
|
|||
from .dialogue import dialogue_page
|
||||
from .knowledge_base import knowledge_base_page
|
||||
from .model_config import model_config_page
|
||||
|
|
@ -0,0 +1 @@
|
|||
from .dialogue import dialogue_page
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
import streamlit as st
|
||||
from webui_pages.utils import *
|
||||
from streamlit_chatbox import *
|
||||
|
||||
chat_box = ChatBox()
|
||||
|
||||
|
||||
def dialogue_page(api: ApiRequest):
|
||||
with st.sidebar:
|
||||
dialogue_mode = st.radio("请选择对话模式",
|
||||
["LLM 对话",
|
||||
"知识库问答",
|
||||
"Bing 搜索问答"])
|
||||
history_len = st.slider("历史对话轮数:", 1, 10, 1)
|
||||
if dialogue_mode == "知识库问答":
|
||||
selected_kb = st.selectbox("请选择知识库:", get_kb_list())
|
||||
with st.expander(f"{selected_kb} 中已存储文件"):
|
||||
st.write(get_kb_files(selected_kb))
|
||||
|
||||
# Display chat messages from history on app rerun
|
||||
chat_box.output_messages()
|
||||
|
||||
if prompt := st.chat_input("请输入对话内容,换行请使用Ctrl+Enter"):
|
||||
chat_box.user_say(prompt)
|
||||
chat_box.ai_say("正在思考...")
|
||||
# with api.chat_fastchat([{"role": "user", "content": "prompt"}], stream=streaming) as r:
|
||||
# todo: support history len
|
||||
text = ""
|
||||
r = api.chat_chat(prompt, no_remote_api=True)
|
||||
for t in r:
|
||||
text += t
|
||||
chat_box.update_msg(text)
|
||||
chat_box.update_msg(text, streaming=False)
|
||||
# with api.chat_chat(prompt) as r:
|
||||
# for t in r.iter_text(None):
|
||||
# text += t
|
||||
# chat_box.update_msg(text)
|
||||
# chat_box.update_msg(text, streaming=False)
|
||||
|
|
@ -0,0 +1 @@
|
|||
from .knowledge_base import knowledge_base_page
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
import streamlit as st
|
||||
from webui_pages.utils import *
|
||||
|
||||
def knowledge_base_page(api: ApiRequest):
|
||||
st.write(123)
|
||||
pass
|
||||
|
|
@ -0,0 +1 @@
|
|||
from .model_config import model_config_page
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
import streamlit as st
|
||||
from webui_pages.utils import *
|
||||
|
||||
def model_config_page(api: ApiRequest):
|
||||
pass
|
||||
|
|
@ -0,0 +1,247 @@
|
|||
# 该文件包含webui通用工具,可以被不同的webui使用
|
||||
|
||||
from typing import *
|
||||
from pathlib import Path
|
||||
import os
|
||||
from configs.model_config import (
|
||||
KB_ROOT_PATH,
|
||||
LLM_MODEL,
|
||||
llm_model_dict,
|
||||
)
|
||||
import httpx
|
||||
import asyncio
|
||||
from server.chat.openai_chat import OpenAiChatMsgIn
|
||||
from fastapi.responses import StreamingResponse
|
||||
|
||||
|
||||
def set_httpx_timeout(timeout=60.0):
|
||||
'''
|
||||
设置httpx默认timeout到60秒。
|
||||
httpx默认timeout是5秒,在请求LLM回答时不够用。
|
||||
'''
|
||||
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
|
||||
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
|
||||
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
|
||||
|
||||
|
||||
KB_ROOT_PATH = Path(KB_ROOT_PATH)
|
||||
set_httpx_timeout()
|
||||
|
||||
|
||||
def get_kb_list() -> List[str]:
|
||||
'''
|
||||
获取知识库列表
|
||||
'''
|
||||
kb_list = os.listdir(KB_ROOT_PATH)
|
||||
return [x for x in kb_list if (KB_ROOT_PATH / x).is_dir()]
|
||||
|
||||
|
||||
def get_kb_files(kb: str) -> List[str]:
|
||||
'''
|
||||
获取某个知识库下包含的所有文件(只包括根目录一级)
|
||||
'''
|
||||
kb = KB_ROOT_PATH / kb / "content"
|
||||
if kb.is_dir():
|
||||
kb_files = os.listdir(kb)
|
||||
return kb_files
|
||||
else:
|
||||
return []
|
||||
|
||||
|
||||
def run_async(cor):
|
||||
'''
|
||||
在同步环境中运行异步代码.
|
||||
'''
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
except:
|
||||
loop = asyncio.new_event_loop()
|
||||
return loop.run_until_complete(cor)
|
||||
|
||||
|
||||
def iter_over_async(ait, loop):
|
||||
'''
|
||||
将异步生成器封装成同步生成器.
|
||||
'''
|
||||
ait = ait.__aiter__()
|
||||
async def get_next():
|
||||
try:
|
||||
obj = await ait.__anext__()
|
||||
return False, obj
|
||||
except StopAsyncIteration:
|
||||
return True, None
|
||||
while True:
|
||||
done, obj = loop.run_until_complete(get_next())
|
||||
if done:
|
||||
break
|
||||
yield obj
|
||||
|
||||
|
||||
class ApiRequest:
|
||||
'''
|
||||
api.py调用的封装,主要实现:
|
||||
1. 简化api调用方式
|
||||
2. 实现无api调用(直接运行server.chat.*中的视图函数获取结果),无需启动api.py
|
||||
'''
|
||||
def __init__(
|
||||
self,
|
||||
base_url: str = "http://127.0.0.1:7861",
|
||||
timeout: float = 60.0,
|
||||
):
|
||||
self.base_url = base_url
|
||||
self.timeout = timeout
|
||||
|
||||
def _parse_url(self, url: str) -> str:
|
||||
if (not url.startswith("http")
|
||||
and self.base_url
|
||||
):
|
||||
part1 = self.base_url.strip(" /")
|
||||
part2 = url.strip(" /")
|
||||
return f"{part1}/{part2}"
|
||||
else:
|
||||
return url
|
||||
|
||||
def get(
|
||||
self,
|
||||
url: str,
|
||||
params: Union[Dict, List[Tuple], bytes] = None,
|
||||
retry: int = 3,
|
||||
**kwargs: Any,
|
||||
) -> Union[httpx.Response, None]:
|
||||
url = self._parse_url(url)
|
||||
kwargs.setdefault("timeout", self.timeout)
|
||||
while retry > 0:
|
||||
try:
|
||||
return httpx.get(url, params, **kwargs)
|
||||
except:
|
||||
retry -= 1
|
||||
|
||||
async def aget(
|
||||
self,
|
||||
url: str,
|
||||
params: Union[Dict, List[Tuple], bytes] = None,
|
||||
retry: int = 3,
|
||||
**kwargs: Any,
|
||||
) -> Union[httpx.Response, None]:
|
||||
rl = self._parse_url(url)
|
||||
kwargs.setdefault("timeout", self.timeout)
|
||||
async with httpx.AsyncClient() as client:
|
||||
while retry > 0:
|
||||
try:
|
||||
return await client.get(url, params, **kwargs)
|
||||
except:
|
||||
retry -= 1
|
||||
|
||||
def post(
|
||||
self,
|
||||
url: str,
|
||||
data: Dict = None,
|
||||
json: Dict = None,
|
||||
retry: int = 3,
|
||||
stream: bool = False,
|
||||
**kwargs: Any
|
||||
) -> Union[httpx.Response, None]:
|
||||
url = self._parse_url(url)
|
||||
kwargs.setdefault("timeout", self.timeout)
|
||||
while retry > 0:
|
||||
try:
|
||||
# return requests.post(url, data=data, json=json, stream=stream, **kwargs)
|
||||
if stream:
|
||||
return httpx.stream("POST", url, data=data, json=json, **kwargs)
|
||||
else:
|
||||
return httpx.post(url, data=data, json=json, **kwargs)
|
||||
except:
|
||||
retry -= 1
|
||||
|
||||
async def apost(
|
||||
self,
|
||||
url: str,
|
||||
data: Dict = None,
|
||||
json: Dict = None,
|
||||
retry: int = 3,
|
||||
**kwargs: Any
|
||||
) -> Union[httpx.Response, None]:
|
||||
rl = self._parse_url(url)
|
||||
kwargs.setdefault("timeout", self.timeout)
|
||||
async with httpx.AsyncClient() as client:
|
||||
while retry > 0:
|
||||
try:
|
||||
return await client.post(url, data=data, json=json, **kwargs)
|
||||
except:
|
||||
retry -= 1
|
||||
|
||||
def _stream2generator(self, response: StreamingResponse):
|
||||
'''
|
||||
将api.py中视图函数返回的StreamingResponse转化为同步生成器
|
||||
'''
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
except:
|
||||
loop = asyncio.new_event_loop()
|
||||
return iter_over_async(response.body_iterator, loop)
|
||||
|
||||
def chat_fastchat(
|
||||
self,
|
||||
messages: List[Dict],
|
||||
stream: bool = True,
|
||||
model: str = LLM_MODEL,
|
||||
temperature: float = 0.7,
|
||||
max_tokens: int = 1024, # todo:根据message内容自动计算max_tokens
|
||||
no_remote_api=False, # all api view function directly
|
||||
**kwargs: Any,
|
||||
):
|
||||
'''
|
||||
对应api.py/chat/fastchat接口
|
||||
'''
|
||||
msg = OpenAiChatMsgIn(**{
|
||||
"messages": messages,
|
||||
"stream": stream,
|
||||
"model": model,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
**kwargs,
|
||||
})
|
||||
|
||||
if no_remote_api:
|
||||
from server.chat.openai_chat import openai_chat
|
||||
response = openai_chat(msg)
|
||||
return self._stream2generator(response)
|
||||
else:
|
||||
data = msg.dict(exclude_unset=True, exclude_none=True)
|
||||
response = self.post(
|
||||
"/chat/fastchat",
|
||||
json=data,
|
||||
stream=stream,
|
||||
)
|
||||
return response
|
||||
|
||||
def chat_chat(
|
||||
self,
|
||||
query: str,
|
||||
no_remote_api: bool = False,
|
||||
):
|
||||
'''
|
||||
对应api.py/chat/chat接口
|
||||
'''
|
||||
if no_remote_api:
|
||||
from server.chat.chat import chat
|
||||
response = chat(query)
|
||||
return self._stream2generator(response)
|
||||
else:
|
||||
response = self.post("/chat/chat", json=f"{query}", stream=True)
|
||||
return response
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
api = ApiRequest()
|
||||
# print(api.chat_fastchat(
|
||||
# messages=[{"role": "user", "content": "hello"}]
|
||||
# ))
|
||||
|
||||
with api.chat_chat("你好") as r:
|
||||
for t in r.iter_text(None):
|
||||
print(t)
|
||||
|
||||
r = api.chat_chat("你好", no_remote_api=True)
|
||||
for t in r:
|
||||
print(t)
|
||||
Loading…
Reference in New Issue