temporarily save faiss_cache
This commit is contained in:
parent
67b7c99d03
commit
1fac51fe35
|
|
@ -18,7 +18,7 @@ starlette~=0.27.0
|
|||
unstructured[all-docs]==0.11.0
|
||||
python-magic-bin; sys_platform == 'win32'
|
||||
SQLAlchemy==2.0.19
|
||||
faiss-cpu
|
||||
faiss-cpu # `conda install faiss-gpu -c conda-forge` if you want to accelerate with gpus
|
||||
accelerate>=0.24.1
|
||||
spacy>=3.7.2
|
||||
PyMuPDF
|
||||
|
|
@ -64,7 +64,7 @@ metaphor-python>=0.1.23
|
|||
|
||||
# WebUI requirements
|
||||
|
||||
streamlit>=1.29.0
|
||||
streamlit>=1.29.0 # do remember to add streamlit to environment variables if you use windows
|
||||
streamlit-option-menu>=0.3.6
|
||||
streamlit-antd-components>=0.2.3
|
||||
streamlit-chatbox>=1.1.11
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@ class _FaissPool(CachePool):
|
|||
# create an empty vector store
|
||||
embeddings = EmbeddingsFunAdapter(embed_model)
|
||||
doc = Document(page_content="init", metadata={})
|
||||
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True)
|
||||
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT")
|
||||
ids = list(vector_store.docstore._dict.keys())
|
||||
vector_store.delete(ids)
|
||||
return vector_store
|
||||
|
|
@ -82,7 +82,7 @@ class KBFaissPool(_FaissPool):
|
|||
|
||||
if os.path.isfile(os.path.join(vs_path, "index.faiss")):
|
||||
embeddings = self.load_kb_embeddings(kb_name=kb_name, embed_device=embed_device, default_embed_model=embed_model)
|
||||
vector_store = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
|
||||
vector_store = FAISS.load_local(vs_path, embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT")
|
||||
elif create:
|
||||
# create an empty vector store
|
||||
if not os.path.exists(vs_path):
|
||||
|
|
|
|||
Loading…
Reference in New Issue