update class method of KnowledgeBase and KnowledgeFile

This commit is contained in:
imClumsyPanda 2023-08-05 13:46:00 +08:00
parent 6c7adfbaeb
commit 206261cd0c
4 changed files with 66 additions and 29 deletions

View File

@ -10,7 +10,9 @@ async def list_kbs():
async def create_kb(knowledge_base_name: str,
vector_store_type: str = "faiss"):
vector_store_type: str = "faiss",
embed_model: str = "m3e-base",
):
# Create selected knowledge base
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
@ -19,7 +21,8 @@ async def create_kb(knowledge_base_name: str,
if KnowledgeBase.exists(knowledge_base_name):
return BaseResponse(code=404, msg=f"已存在同名知识库 {knowledge_base_name}")
kb = KnowledgeBase(knowledge_base_name=knowledge_base_name,
vector_store_type=vector_store_type)
vector_store_type=vector_store_type,
embed_model=embed_model)
kb.create()
return BaseResponse(code=200, msg=f"已新增知识库 {knowledge_base_name}")

View File

@ -7,7 +7,7 @@ from server.knowledge_base.utils import (validate_kb_name, get_kb_path, get_doc_
get_file_path, refresh_vs_cache, get_vs_path)
from fastapi.responses import StreamingResponse
import json
from server.knowledge_base.knowledge_file import KnowledgeFile
from server.knowledge_base import KnowledgeFile, KnowledgeBase
async def list_docs(knowledge_base_name: str):
@ -59,8 +59,8 @@ async def upload_doc(file: UploadFile = File(description="上传文件"),
kb_file = KnowledgeFile(filename=file.filename,
knowledge_base_name=knowledge_base_name)
kb_file.file2text()
kb_file.docs2vs()
kb = KnowledgeBase.load(knowledge_base_name=knowledge_base_name)
kb.add_file(kb_file.file2text())
return BaseResponse(code=200, msg=f"成功上传文件 {file.filename}")
@ -108,20 +108,20 @@ async def recreate_vector_store(knowledge_base_name: str):
recreate vector store from the content.
this is usefull when user can copy files to content folder directly instead of upload through network.
'''
async def output(kb):
vs_path = get_vs_path(kb)
async def output(kb_name):
vs_path = get_vs_path(kb_name)
if os.path.isdir(vs_path):
shutil.rmtree(vs_path)
os.mkdir(vs_path)
print(f"start to recreate vectore in {vs_path}")
docs = (await list_docs(kb)).data
docs = (await list_docs(kb_name)).data
for i, filename in enumerate(docs):
kb_file = KnowledgeFile(filename=filename,
knowledge_base_name=kb)
print(f"processing {get_file_path(kb, filename)} to vector store.")
kb_file.file2text()
kb_file.docs2vs()
knowledge_base_name=kb_name)
print(f"processing {kb_file.filepath} to vector store.")
kb = KnowledgeBase.load(knowledge_base_name=kb_name)
kb.add_file(kb_file.file2text())
yield json.dumps({
"total": len(docs),
"finished": i + 1,

View File

@ -1,9 +1,16 @@
from server.knowledge_base.utils import (get_vs_path, get_kb_path, get_doc_path)
import os
import sqlite3
from configs.model_config import KB_ROOT_PATH
import datetime
import shutil
from langchain.vectorstores import FAISS
from server.knowledge_base.utils import (get_vs_path, get_kb_path, get_doc_path,
refresh_vs_cache, load_embeddings)
from configs.model_config import (KB_ROOT_PATH, embedding_model_dict, EMBEDDING_MODEL,
EMBEDDING_DEVICE)
from server.utils import torch_gc
from typing import List
from langchain.docstore.document import Document
SUPPORTED_VS_TYPES = ["faiss", "milvus"]
DB_ROOT = os.path.join(KB_ROOT_PATH, "info.db")
@ -22,7 +29,8 @@ def list_kbs_from_db():
conn.close()
return kbs
def add_kb_to_db(kb_name, vs_type):
def add_kb_to_db(kb_name, vs_type, embed_model):
conn = sqlite3.connect(DB_ROOT)
c = conn.cursor()
# Create table
@ -30,13 +38,15 @@ def add_kb_to_db(kb_name, vs_type):
(ID INTEGER PRIMARY KEY AUTOINCREMENT,
KB_NAME TEXT,
VS_TYPE TEXT,
EMBED_MODEL TEXT,
FILE_COUNT INTEGER,
CREATE_TIME DATETIME) ''')
# Insert a row of data
c.execute(f"""INSERT INTO KNOWLEDGE_BASE
(KB_NAME, VS_TYPE, FILE_COUNT, CREATE_TIME)
(KB_NAME, VS_TYPE, EMBED_MODEL, FILE_COUNT, CREATE_TIME)
VALUES
('{kb_name}','{vs_type}',0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""")
('{kb_name}','{vs_type}','{embed_model}',
0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""")
conn.commit()
conn.close()
@ -56,17 +66,17 @@ def kb_exists(kb_name):
def load_kb_from_db(kb_name):
conn = sqlite3.connect(DB_ROOT)
c = conn.cursor()
c.execute(f'''SELECT KB_NAME, VS_TYPE
c.execute(f'''SELECT KB_NAME, VS_TYPE, EMBED_MODEL
FROM KNOWLEDGE_BASE
WHERE KB_NAME="{kb_name}" ''')
resp = c.fetchone()
if resp:
kb_name, vs_type = resp
kb_name, vs_type, embed_model = resp
else:
kb_name, vs_type = None, None
kb_name, vs_type, embed_model = None, None, None
conn.commit()
conn.close()
return kb_name, vs_type
return kb_name, vs_type, embed_model
def delete_kb_from_db(kb_name):
@ -84,11 +94,15 @@ class KnowledgeBase:
def __init__(self,
knowledge_base_name: str,
vector_store_type: str,
embed_model: str,
):
self.kb_name = knowledge_base_name
if vector_store_type not in SUPPORTED_VS_TYPES:
raise ValueError(f"暂未支持向量库类型 {vector_store_type}")
self.vs_type = vector_store_type
if embed_model not in embedding_model_dict.keys():
raise ValueError(f"暂未支持embedding模型 {embed_model}")
self.embed_model = embed_model
self.kb_path = get_kb_path(self.kb_name)
self.doc_path = get_doc_path(self.kb_name)
if self.vs_type in ["faiss"]:
@ -102,12 +116,31 @@ class KnowledgeBase:
if self.vs_type in ["faiss"]:
if not os.path.exists(self.vs_path):
os.makedirs(self.vs_path)
add_kb_to_db(self.kb_name, self.vs_type)
add_kb_to_db(self.kb_name, self.vs_type, self.embed_model)
elif self.vs_type in ["milvus"]:
# TODO: 创建milvus库
pass
return True
def add_file(self, docs: List[Document]):
vs_path = get_vs_path(self.kb_name)
embeddings = load_embeddings(embedding_model_dict[self.embed_model], EMBEDDING_DEVICE)
if self.vs_type in ["faiss"]:
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
vector_store = FAISS.load_local(vs_path, embeddings)
vector_store.add_documents(docs)
torch_gc()
else:
if not os.path.exists(vs_path):
os.makedirs(vs_path)
vector_store = FAISS.from_documents(docs, embeddings) # docs 为Document列表
torch_gc()
vector_store.save_local(vs_path)
refresh_vs_cache(self.kb_name)
elif self.vs_type in ["milvus"]:
# TODO: 向milvus库中增加文件
pass
@classmethod
def exists(cls,
knowledge_base_name: str):
@ -116,8 +149,8 @@ class KnowledgeBase:
@classmethod
def load(cls,
knowledge_base_name: str):
kb_name, vs_type = load_kb_from_db(knowledge_base_name)
return cls(kb_name, vs_type)
kb_name, vs_type, embed_model = load_kb_from_db(knowledge_base_name)
return cls(kb_name, vs_type, embed_model)
@classmethod
def delete(cls,

View File

@ -4,6 +4,7 @@ from server.knowledge_base.utils import (get_file_path, get_vs_path,
from configs.model_config import (embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
from langchain.vectorstores import FAISS
from server.utils import torch_gc
from server.knowledge_base import KnowledgeBase
class KnowledgeFile:
@ -12,7 +13,7 @@ class KnowledgeFile:
filename: str,
knowledge_base_name: str
):
self.knowledge_base_name = knowledge_base_name
self.kb = KnowledgeBase.load(knowledge_base_name)
self.knowledge_base_type = "faiss"
self.filename = filename
self.ext = os.path.splitext(filename)[-1]
@ -28,12 +29,12 @@ class KnowledgeFile:
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
self.docs = loader.load_and_split(text_splitter)
return True
return loader.load_and_split(text_splitter)
def docs2vs(self):
vs_path = get_vs_path(self.knowledge_base_name)
vs_path = get_vs_path(self.kb.kb_name)
embeddings = load_embeddings(embedding_model_dict[EMBEDDING_MODEL], EMBEDDING_DEVICE)
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
vector_store = FAISS.load_local(vs_path, embeddings)
vector_store.add_documents(self.docs)
@ -44,5 +45,5 @@ class KnowledgeFile:
vector_store = FAISS.from_documents(self.docs, embeddings) # docs 为Document列表
torch_gc()
vector_store.save_local(vs_path)
refresh_vs_cache(self.knowledge_base_name)
refresh_vs_cache(self.kb.kb_name)
return True