update requirements.txt
This commit is contained in:
parent
3dc5860cfe
commit
2240ed1ec2
|
|
@ -16,13 +16,28 @@ def torch_gc():
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
"/Users/liuqian/Downloads/ChatGLM-6B/chatglm_hf_model",
|
||||||
|
# "THUDM/chatglm-6b",
|
||||||
|
trust_remote_code=True
|
||||||
|
)
|
||||||
|
model = (
|
||||||
|
AutoModel.from_pretrained(
|
||||||
|
"/Users/liuqian/Downloads/ChatGLM-6B/chatglm_hf_model",
|
||||||
|
# "THUDM/chatglm-6b",
|
||||||
|
trust_remote_code=True)
|
||||||
|
.float()
|
||||||
|
.to("mps")
|
||||||
|
# .half()
|
||||||
|
# .cuda()
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class ChatGLM(LLM):
|
class ChatGLM(LLM):
|
||||||
max_token: int = 10000
|
max_token: int = 10000
|
||||||
temperature: float = 0.1
|
temperature: float = 0.1
|
||||||
top_p = 0.9
|
top_p = 0.9
|
||||||
history = []
|
history = []
|
||||||
tokenizer: object = None
|
|
||||||
model: object = None
|
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
@ -34,8 +49,8 @@ class ChatGLM(LLM):
|
||||||
def _call(self,
|
def _call(self,
|
||||||
prompt: str,
|
prompt: str,
|
||||||
stop: Optional[List[str]] = None) -> str:
|
stop: Optional[List[str]] = None) -> str:
|
||||||
response, updated_history = self.model.chat(
|
response, updated_history = model.chat(
|
||||||
self.tokenizer,
|
tokenizer,
|
||||||
prompt,
|
prompt,
|
||||||
history=self.history,
|
history=self.history,
|
||||||
max_length=self.max_token,
|
max_length=self.max_token,
|
||||||
|
|
@ -48,16 +63,17 @@ class ChatGLM(LLM):
|
||||||
self.history = updated_history
|
self.history = updated_history
|
||||||
return response
|
return response
|
||||||
|
|
||||||
def load_model(self,
|
def get_num_tokens(self, text: str) -> int:
|
||||||
model_name_or_path: str = "THUDM/chatglm-6b"):
|
tokenized_text = tokenizer.tokenize(text)
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
return len(tokenized_text)
|
||||||
model_name_or_path,
|
|
||||||
trust_remote_code=True
|
if __name__ == "__main__":
|
||||||
)
|
history = []
|
||||||
self.model = (
|
while True:
|
||||||
AutoModel.from_pretrained(
|
query = input("Input your question 请输入问题:")
|
||||||
model_name_or_path,
|
resp, history = model.chat(tokenizer,
|
||||||
trust_remote_code=True)
|
query,
|
||||||
.half()
|
history=history,
|
||||||
.cuda()
|
temperature=0.01,
|
||||||
)
|
max_length=100000)
|
||||||
|
print(resp)
|
||||||
|
|
@ -1,5 +1,5 @@
|
||||||
from langchain.prompts.prompt import PromptTemplate
|
from langchain.prompts.prompt import PromptTemplate
|
||||||
from langchain.chains import ChatVectorDBChain
|
from langchain.chains import ChatVectorDBChain, ConversationalRetrievalChain
|
||||||
from langchain.prompts.chat import (
|
from langchain.prompts.chat import (
|
||||||
ChatPromptTemplate,
|
ChatPromptTemplate,
|
||||||
SystemMessagePromptTemplate,
|
SystemMessagePromptTemplate,
|
||||||
|
|
@ -13,16 +13,13 @@ from chatglm_llm import ChatGLM
|
||||||
embedding_model_dict = {
|
embedding_model_dict = {
|
||||||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||||||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||||||
"text2vec": "GanymedeNil/text2vec-large-chinese"
|
"text2vec": "/Users/liuqian/Downloads/ChatGLM-6B/chatglm_embedding"#"GanymedeNil/text2vec-large-chinese"
|
||||||
}
|
}
|
||||||
|
|
||||||
llm_model_dict = {
|
|
||||||
"chatglm-6b": "THUDM/chatglm-6b",
|
|
||||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4"
|
|
||||||
}
|
|
||||||
|
|
||||||
chatglm = ChatGLM()
|
chatglm = ChatGLM()
|
||||||
chatglm.load_model(model_name_or_path=llm_model_dict["chatglm-6b"])
|
|
||||||
|
|
||||||
def init_knowledge_vector_store(filepath):
|
def init_knowledge_vector_store(filepath):
|
||||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict["text2vec"], )
|
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict["text2vec"], )
|
||||||
|
|
@ -56,15 +53,16 @@ def get_knowledge_based_answer(query, vector_store, chat_history=[]):
|
||||||
改写后的独立、完整的问题:"""
|
改写后的独立、完整的问题:"""
|
||||||
new_question_prompt = PromptTemplate.from_template(condese_propmt_template)
|
new_question_prompt = PromptTemplate.from_template(condese_propmt_template)
|
||||||
chatglm.history = chat_history
|
chatglm.history = chat_history
|
||||||
knowledge_chain = ChatVectorDBChain.from_llm(
|
knowledge_chain = ConversationalRetrievalChain.from_llm(
|
||||||
llm=chatglm,
|
llm=chatglm,
|
||||||
vectorstore=vector_store,
|
retriever=vector_store.as_retriever(),
|
||||||
qa_prompt=prompt,
|
qa_prompt=prompt,
|
||||||
condense_question_prompt=new_question_prompt,
|
condense_question_prompt=new_question_prompt,
|
||||||
)
|
)
|
||||||
|
|
||||||
knowledge_chain.return_source_documents = True
|
knowledge_chain.return_source_documents = True
|
||||||
knowledge_chain.top_k_docs_for_context = 10
|
# knowledge_chain.top_k_docs_for_context = 10
|
||||||
|
knowledge_chain.max_tokens_limit = 10000
|
||||||
|
|
||||||
result = knowledge_chain({"question": query, "chat_history": chat_history})
|
result = knowledge_chain({"question": query, "chat_history": chat_history})
|
||||||
return result, chatglm.history
|
return result, chatglm.history
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue