Merge branch 'dev_summary' into dev_command_summary

实现summary_chunk 文档分段总结业务实现
使用 MapReduceDocumentsChain 生成摘要
# Conflicts:
#	server/api.py
#	server/knowledge_base/kb_doc_api.py
#	server/knowledge_base/kb_service/base.py
#	server/knowledge_base/migrate.py
This commit is contained in:
glide-the 2023-11-25 22:30:41 +08:00
parent f57837c07a
commit 248db46187
5 changed files with 225 additions and 2 deletions

View File

@ -81,6 +81,8 @@ def mount_app_routes(app: FastAPI, run_mode: str = None):
# 知识库相关接口 # 知识库相关接口
mount_knowledge_routes(app) mount_knowledge_routes(app)
# 摘要相关接口
mount_filename_summary_routes(app)
# LLM模型相关接口 # LLM模型相关接口
app.post("/llm_model/list_running_models", app.post("/llm_model/list_running_models",
@ -230,6 +232,20 @@ def mount_knowledge_routes(app: FastAPI):
)(upload_temp_docs) )(upload_temp_docs)
def mount_filename_summary_routes(app: FastAPI):
from server.knowledge_base.kb_summary_api import (summary_file_to_vector_store, recreate_summary_vector_store)
app.post("/knowledge_base/kb_summary_api/summary_file_to_vector_store",
tags=["Knowledge kb_summary_api Management"],
summary="文件摘要"
)(summary_file_to_vector_store)
app.post("/knowledge_base/kb_summary_api/recreate_summary_vector_store",
tags=["Knowledge kb_summary_api Management"],
summary="重建文件摘要"
)(recreate_summary_vector_store)
def run_api(host, port, **kwargs): def run_api(host, port, **kwargs):
if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"): if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"):
uvicorn.run(app, uvicorn.run(app,

View File

@ -28,6 +28,7 @@ from typing import List, Union, Dict, Optional
from server.embeddings_api import embed_texts from server.embeddings_api import embed_texts
from server.embeddings_api import embed_documents from server.embeddings_api import embed_documents
from server.knowledge_base.model.kb_document_model import DocumentWithVSId
def normalize(embeddings: List[List[float]]) -> np.ndarray: def normalize(embeddings: List[List[float]]) -> np.ndarray:
@ -183,12 +184,22 @@ class KBService(ABC):
def get_doc_by_ids(self, ids: List[str]) -> List[Document]: def get_doc_by_ids(self, ids: List[str]) -> List[Document]:
return [] return []
def list_docs(self, file_name: str = None, metadata: Dict = {}) -> List[Document]: def list_docs(self, file_name: str = None, metadata: Dict = {}) -> List[DocumentWithVSId]:
''' '''
通过file_name或metadata检索Document 通过file_name或metadata检索Document
''' '''
doc_infos = list_docs_from_db(kb_name=self.kb_name, file_name=file_name, metadata=metadata) doc_infos = list_docs_from_db(kb_name=self.kb_name, file_name=file_name, metadata=metadata)
docs = self.get_doc_by_ids([x["id"] for x in doc_infos]) docs = []
for x in doc_infos:
doc_info_s = self.get_doc_by_ids([x["id"]])
if doc_info_s is not None and doc_info_s != []:
# 处理非空的情况
doc_with_id = DocumentWithVSId(**doc_info_s[0].dict(), id=x["id"])
docs.append(doc_with_id)
else:
# 处理空的情况
# 可以选择跳过当前循环迭代或执行其他操作
pass
return docs return docs
@abstractmethod @abstractmethod

View File

@ -0,0 +1,168 @@
from fastapi import Body
from configs import (DEFAULT_VS_TYPE, EMBEDDING_MODEL,
OVERLAP_SIZE,
logger, log_verbose, )
from server.knowledge_base.utils import (list_files_from_folder)
from fastapi.responses import StreamingResponse
import json
from server.knowledge_base.kb_service.base import KBServiceFactory
from typing import List, Optional
from server.knowledge_base.kb_summary.base import KBSummaryService
from server.knowledge_base.kb_summary.summary_chunk import SummaryAdapter
from server.utils import wrap_done, get_ChatOpenAI
from configs import LLM_MODELS, TEMPERATURE
def recreate_summary_vector_store(
knowledge_base_name: str = Body(..., examples=["samples"]),
allow_empty_kb: bool = Body(True),
vs_type: str = Body(DEFAULT_VS_TYPE),
embed_model: str = Body(EMBEDDING_MODEL),
file_description: str = Body(''),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
):
"""
重建文件摘要
:param max_tokens:
:param model_name:
:param temperature:
:param file_description:
:param knowledge_base_name:
:param allow_empty_kb:
:param vs_type:
:param embed_model:
:return:
"""
def output():
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
if not kb.exists() and not allow_empty_kb:
yield {"code": 404, "msg": f"未找到知识库 {knowledge_base_name}"}
else:
# 重新创建知识库
kb_summary = KBSummaryService(knowledge_base_name, embed_model)
kb_summary.drop_kb_summary()
kb_summary.create_kb_summary()
llm = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
)
reduce_llm = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
)
# 文本摘要适配器
summary = SummaryAdapter.form_summary(llm=llm,
reduce_llm=reduce_llm,
overlap_size=OVERLAP_SIZE)
files = list_files_from_folder(knowledge_base_name)
i = 0
for i, file_name in enumerate(files):
doc_infos = kb.list_docs(file_name=file_name)
docs = summary.summarize(kb_name=knowledge_base_name,
file_description=file_description,
docs=doc_infos)
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
if status_kb_summary:
logger.info(f"({i + 1} / {len(files)}): {file_name} 向量化总结完成")
yield json.dumps({
"code": 200,
"msg": f"({i + 1} / {len(files)}): {file_name}",
"total": len(files),
"finished": i + 1,
"doc": file_name,
}, ensure_ascii=False)
else:
msg = f"知识库'{knowledge_base_name}'总结文件‘{file_name}’时出错。已跳过。"
logger.error(msg)
yield json.dumps({
"code": 500,
"msg": msg,
})
i += 1
return StreamingResponse(output(), media_type="text/event-stream")
def summary_file_to_vector_store(
knowledge_base_name: str = Body(..., examples=["samples"]),
file_name: str = Body(..., examples=["test.pdf"]),
allow_empty_kb: bool = Body(True),
vs_type: str = Body(DEFAULT_VS_TYPE),
embed_model: str = Body(EMBEDDING_MODEL),
file_description: str = Body(''),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
):
"""
文件摘要
:param model_name:
:param max_tokens:
:param temperature:
:param file_description:
:param file_name:
:param knowledge_base_name:
:param allow_empty_kb:
:param vs_type:
:param embed_model:
:return:
"""
def output():
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
if not kb.exists() and not allow_empty_kb:
yield {"code": 404, "msg": f"未找到知识库 {knowledge_base_name}"}
else:
# 重新创建知识库
kb_summary = KBSummaryService(knowledge_base_name, embed_model)
kb_summary.create_kb_summary()
llm = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
)
reduce_llm = get_ChatOpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
)
# 文本摘要适配器
summary = SummaryAdapter.form_summary(llm=llm,
reduce_llm=reduce_llm,
overlap_size=OVERLAP_SIZE)
doc_infos = kb.list_docs(file_name=file_name)
docs = summary.summarize(kb_name=knowledge_base_name,
file_description=file_description,
docs=doc_infos)
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
if status_kb_summary:
logger.info(f" {file_name} 向量化总结完成")
yield json.dumps({
"code": 200,
"msg": f"{file_name} 向量化总结完成",
"doc": file_name,
}, ensure_ascii=False)
else:
msg = f"知识库'{knowledge_base_name}'总结文件‘{file_name}’时出错。已跳过。"
logger.error(msg)
yield json.dumps({
"code": 500,
"msg": msg,
})
return StreamingResponse(output(), media_type="text/event-stream")

View File

@ -12,6 +12,8 @@ from server.knowledge_base.kb_service.base import KBServiceFactory
from server.db.models.conversation_model import ConversationModel from server.db.models.conversation_model import ConversationModel
from server.db.models.message_model import MessageModel from server.db.models.message_model import MessageModel
from server.db.repository.knowledge_file_repository import add_file_to_db # ensure Models are imported from server.db.repository.knowledge_file_repository import add_file_to_db # ensure Models are imported
from server.db.repository.knowledge_metadata_repository import add_summary_to_db
from server.db.base import Base, engine from server.db.base import Base, engine
from server.db.session import session_scope from server.db.session import session_scope
import os import os

View File

@ -0,0 +1,26 @@
import requests
import json
import sys
from pathlib import Path
root_path = Path(__file__).parent.parent.parent
sys.path.append(str(root_path))
from server.utils import api_address
api_base_url = api_address()
kb = "samples"
file_name = "/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/knowledge_base/samples/content/llm/大模型技术栈-实战与应用.md"
def test_summary_file_to_vector_store(api="/knowledge_base/kb_summary_api/summary_file_to_vector_store"):
url = api_base_url + api
print("\n文件摘要:")
r = requests.post(url, json={"knowledge_base_name": kb,
"file_name": file_name
}, stream=True)
for chunk in r.iter_content(None):
data = json.loads(chunk)
assert isinstance(data, dict)
assert data["code"] == 200
print(data["msg"])