单个知识库根据doc_ids摘要
This commit is contained in:
parent
248db46187
commit
279ffdf117
|
|
@ -233,15 +233,21 @@ def mount_knowledge_routes(app: FastAPI):
|
|||
|
||||
|
||||
def mount_filename_summary_routes(app: FastAPI):
|
||||
from server.knowledge_base.kb_summary_api import (summary_file_to_vector_store, recreate_summary_vector_store)
|
||||
from server.knowledge_base.kb_summary_api import (summary_file_to_vector_store, recreate_summary_vector_store,
|
||||
summary_doc_ids_to_vector_store)
|
||||
|
||||
app.post("/knowledge_base/kb_summary_api/summary_file_to_vector_store",
|
||||
tags=["Knowledge kb_summary_api Management"],
|
||||
summary="文件摘要"
|
||||
summary="单个知识库根据文件名称摘要"
|
||||
)(summary_file_to_vector_store)
|
||||
app.post("/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store",
|
||||
tags=["Knowledge kb_summary_api Management"],
|
||||
summary="单个知识库根据doc_ids摘要",
|
||||
response_model=BaseResponse,
|
||||
)(summary_doc_ids_to_vector_store)
|
||||
app.post("/knowledge_base/kb_summary_api/recreate_summary_vector_store",
|
||||
tags=["Knowledge kb_summary_api Management"],
|
||||
summary="重建文件摘要"
|
||||
summary="重建单个知识库文件摘要"
|
||||
)(recreate_summary_vector_store)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -90,7 +90,6 @@ class SummaryAdapter:
|
|||
token_max=token_max)
|
||||
|
||||
def summarize(self,
|
||||
kb_name: str,
|
||||
file_description: str,
|
||||
docs: List[DocumentWithVSId] = []
|
||||
) -> List[Document]:
|
||||
|
|
@ -105,12 +104,10 @@ class SummaryAdapter:
|
|||
|
||||
asyncio.set_event_loop(loop)
|
||||
# 同步调用协程代码
|
||||
return loop.run_until_complete(self.asummarize(kb_name=kb_name,
|
||||
file_description=file_description,
|
||||
return loop.run_until_complete(self.asummarize(file_description=file_description,
|
||||
docs=docs))
|
||||
|
||||
async def asummarize(self,
|
||||
kb_name: str,
|
||||
file_description: str,
|
||||
docs: List[DocumentWithVSId] = []) -> List[Document]:
|
||||
|
||||
|
|
|
|||
|
|
@ -9,9 +9,9 @@ from server.knowledge_base.kb_service.base import KBServiceFactory
|
|||
from typing import List, Optional
|
||||
from server.knowledge_base.kb_summary.base import KBSummaryService
|
||||
from server.knowledge_base.kb_summary.summary_chunk import SummaryAdapter
|
||||
from server.utils import wrap_done, get_ChatOpenAI
|
||||
from server.utils import wrap_done, get_ChatOpenAI, BaseResponse
|
||||
from configs import LLM_MODELS, TEMPERATURE
|
||||
|
||||
from server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
||||
|
||||
def recreate_summary_vector_store(
|
||||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
|
|
@ -24,7 +24,7 @@ def recreate_summary_vector_store(
|
|||
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||||
):
|
||||
"""
|
||||
重建文件摘要
|
||||
重建单个知识库文件摘要
|
||||
:param max_tokens:
|
||||
:param model_name:
|
||||
:param temperature:
|
||||
|
|
@ -67,13 +67,12 @@ def recreate_summary_vector_store(
|
|||
for i, file_name in enumerate(files):
|
||||
|
||||
doc_infos = kb.list_docs(file_name=file_name)
|
||||
docs = summary.summarize(kb_name=knowledge_base_name,
|
||||
file_description=file_description,
|
||||
docs = summary.summarize(file_description=file_description,
|
||||
docs=doc_infos)
|
||||
|
||||
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
|
||||
if status_kb_summary:
|
||||
logger.info(f"({i + 1} / {len(files)}): {file_name} 向量化总结完成")
|
||||
logger.info(f"({i + 1} / {len(files)}): {file_name} 总结完成")
|
||||
yield json.dumps({
|
||||
"code": 200,
|
||||
"msg": f"({i + 1} / {len(files)}): {file_name}",
|
||||
|
|
@ -106,7 +105,7 @@ def summary_file_to_vector_store(
|
|||
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||||
):
|
||||
"""
|
||||
文件摘要
|
||||
单个知识库根据文件名称摘要
|
||||
:param model_name:
|
||||
:param max_tokens:
|
||||
:param temperature:
|
||||
|
|
@ -144,16 +143,15 @@ def summary_file_to_vector_store(
|
|||
overlap_size=OVERLAP_SIZE)
|
||||
|
||||
doc_infos = kb.list_docs(file_name=file_name)
|
||||
docs = summary.summarize(kb_name=knowledge_base_name,
|
||||
file_description=file_description,
|
||||
docs = summary.summarize(file_description=file_description,
|
||||
docs=doc_infos)
|
||||
|
||||
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
|
||||
if status_kb_summary:
|
||||
logger.info(f" {file_name} 向量化总结完成")
|
||||
logger.info(f" {file_name} 总结完成")
|
||||
yield json.dumps({
|
||||
"code": 200,
|
||||
"msg": f"{file_name} 向量化总结完成",
|
||||
"msg": f"{file_name} 总结完成",
|
||||
"doc": file_name,
|
||||
}, ensure_ascii=False)
|
||||
else:
|
||||
|
|
@ -166,3 +164,57 @@ def summary_file_to_vector_store(
|
|||
})
|
||||
|
||||
return StreamingResponse(output(), media_type="text/event-stream")
|
||||
|
||||
|
||||
def summary_doc_ids_to_vector_store(
|
||||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
doc_ids: List = Body([], examples=[["uuid"]]),
|
||||
vs_type: str = Body(DEFAULT_VS_TYPE),
|
||||
embed_model: str = Body(EMBEDDING_MODEL),
|
||||
file_description: str = Body(''),
|
||||
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
||||
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||||
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||||
) -> BaseResponse:
|
||||
"""
|
||||
单个知识库根据doc_ids摘要
|
||||
:param knowledge_base_name:
|
||||
:param doc_ids:
|
||||
:param model_name:
|
||||
:param max_tokens:
|
||||
:param temperature:
|
||||
:param file_description:
|
||||
:param vs_type:
|
||||
:param embed_model:
|
||||
:return:
|
||||
"""
|
||||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||||
if not kb.exists():
|
||||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data={})
|
||||
else:
|
||||
llm = get_ChatOpenAI(
|
||||
model_name=model_name,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
reduce_llm = get_ChatOpenAI(
|
||||
model_name=model_name,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
# 文本摘要适配器
|
||||
summary = SummaryAdapter.form_summary(llm=llm,
|
||||
reduce_llm=reduce_llm,
|
||||
overlap_size=OVERLAP_SIZE)
|
||||
|
||||
doc_infos = kb.get_doc_by_ids(ids=doc_ids)
|
||||
# doc_infos转换成DocumentWithVSId包装的对象
|
||||
doc_info_with_ids = [DocumentWithVSId(**doc.dict(), id=with_id) for with_id, doc in zip(doc_ids, doc_infos)]
|
||||
|
||||
docs = summary.summarize(file_description=file_description,
|
||||
docs=doc_info_with_ids)
|
||||
|
||||
# 将docs转换成dict
|
||||
resp_summarize = [{**doc.dict()} for doc in docs]
|
||||
|
||||
return BaseResponse(code=200, msg="总结完成", data={"summarize": resp_summarize})
|
||||
|
|
|
|||
|
|
@ -11,6 +11,11 @@ api_base_url = api_address()
|
|||
|
||||
kb = "samples"
|
||||
file_name = "/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/knowledge_base/samples/content/llm/大模型技术栈-实战与应用.md"
|
||||
doc_ids = [
|
||||
"357d580f-fdf7-495c-b58b-595a398284e8",
|
||||
"c7338773-2e83-4671-b237-1ad20335b0f0",
|
||||
"6da613d1-327d-466f-8c1a-b32e6f461f47"
|
||||
]
|
||||
|
||||
|
||||
def test_summary_file_to_vector_store(api="/knowledge_base/kb_summary_api/summary_file_to_vector_store"):
|
||||
|
|
@ -24,3 +29,16 @@ def test_summary_file_to_vector_store(api="/knowledge_base/kb_summary_api/summar
|
|||
assert isinstance(data, dict)
|
||||
assert data["code"] == 200
|
||||
print(data["msg"])
|
||||
|
||||
|
||||
def test_summary_doc_ids_to_vector_store(api="/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store"):
|
||||
url = api_base_url + api
|
||||
print("\n文件摘要:")
|
||||
r = requests.post(url, json={"knowledge_base_name": kb,
|
||||
"doc_ids": doc_ids
|
||||
}, stream=True)
|
||||
for chunk in r.iter_content(None):
|
||||
data = json.loads(chunk)
|
||||
assert isinstance(data, dict)
|
||||
assert data["code"] == 200
|
||||
print(data)
|
||||
|
|
|
|||
Loading…
Reference in New Issue