update cli_demo.py
This commit is contained in:
parent
5d2055c6e5
commit
3187423ed4
|
|
@ -8,6 +8,7 @@ import sentence_transformers
|
|||
import os
|
||||
from configs.model_config import *
|
||||
import datetime
|
||||
from typing import List
|
||||
|
||||
# return top-k text chunk from vector store
|
||||
VECTOR_SEARCH_TOP_K = 10
|
||||
|
|
@ -42,7 +43,8 @@ class LocalDocQA:
|
|||
self.top_k = top_k
|
||||
|
||||
def init_knowledge_vector_store(self,
|
||||
filepath: str):
|
||||
filepath: str or List[str]):
|
||||
if isinstance(filepath, str):
|
||||
if not os.path.exists(filepath):
|
||||
print("路径不存在")
|
||||
return None
|
||||
|
|
@ -65,6 +67,15 @@ class LocalDocQA:
|
|||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
else:
|
||||
docs = []
|
||||
for file in filepath:
|
||||
try:
|
||||
loader = UnstructuredFileLoader(file, mode="elements")
|
||||
docs += loader.load()
|
||||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
|
||||
vector_store = FAISS.from_documents(docs, self.embeddings)
|
||||
vs_path = f"""./vector_store/{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
|
||||
|
|
|
|||
127
webui.py
127
webui.py
|
|
@ -1,7 +1,8 @@
|
|||
import gradio as gr
|
||||
import os
|
||||
import shutil
|
||||
import cli_demo as kb
|
||||
from chains.local_doc_qa import LocalDocQA
|
||||
from configs.model_config import *
|
||||
|
||||
|
||||
def get_file_list():
|
||||
|
|
@ -12,9 +13,11 @@ def get_file_list():
|
|||
|
||||
file_list = get_file_list()
|
||||
|
||||
embedding_model_dict_list = list(kb.embedding_model_dict.keys())
|
||||
embedding_model_dict_list = list(embedding_model_dict.keys())
|
||||
|
||||
llm_model_dict_list = list(kb.llm_model_dict.keys())
|
||||
llm_model_dict_list = list(llm_model_dict.keys())
|
||||
|
||||
local_doc_qa = LocalDocQA()
|
||||
|
||||
|
||||
def upload_file(file):
|
||||
|
|
@ -27,9 +30,9 @@ def upload_file(file):
|
|||
return gr.Dropdown.update(choices=file_list, value=filename)
|
||||
|
||||
|
||||
def get_answer(query, vector_store, history):
|
||||
resp, history = kb.get_knowledge_based_answer(
|
||||
query=query, vector_store=vector_store, chat_history=history)
|
||||
def get_answer(query, vs_path, history):
|
||||
resp, history = local_doc_qa.get_knowledge_based_answer(
|
||||
query=query, vs_path=vs_path, chat_history=history)
|
||||
return history, history
|
||||
|
||||
|
||||
|
|
@ -41,6 +44,25 @@ def get_file_status(history):
|
|||
return history + [[None, "文档已完成加载,请开始提问"]]
|
||||
|
||||
|
||||
def init_model():
|
||||
try:
|
||||
local_doc_qa.init_cfg()
|
||||
return """模型已成功加载,请选择文件后点击"加载文件"按钮"""
|
||||
except:
|
||||
return """模型未成功加载,请重新选择后点击"加载模型"按钮"""
|
||||
|
||||
|
||||
def reinit_model(llm_model, embedding_model, llm_history_len, top_k):
|
||||
local_doc_qa.init_cfg(llm_model=llm_model,
|
||||
embedding_model=embedding_model,
|
||||
llm_history_len=llm_history_len,
|
||||
top_k=top_k),
|
||||
|
||||
|
||||
model_status = gr.State()
|
||||
history = gr.State([])
|
||||
vs_path = gr.State()
|
||||
model_status = init_model()
|
||||
with gr.Blocks(css="""
|
||||
.importantButton {
|
||||
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
|
||||
|
|
@ -63,44 +85,41 @@ with gr.Blocks(css="""
|
|||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
chatbot = gr.Chatbot([[None, """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
|
||||
1. 选择语言模型、Embedding 模型及相关参数后点击"step.1: setting",并等待加载完成提示
|
||||
2. 上传或选择已有文件作为本地知识文档输入后点击"step.2 loading",并等待加载完成提示
|
||||
3. 输入要提交的问题后点击"step.3 asking" """]],
|
||||
1. 选择语言模型、Embedding 模型及相关参数后点击"重新加载模型",并等待加载完成提示
|
||||
2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示
|
||||
3. 输入要提交的问题后,点击回车提交 """], [None, str(model_status)]],
|
||||
elem_id="chat-box",
|
||||
show_label=False).style(height=600)
|
||||
query = gr.Textbox(show_label=False,
|
||||
placeholder="请提问",
|
||||
lines=1,
|
||||
value="用200字总结一下"
|
||||
).style(container=False)
|
||||
|
||||
with gr.Column(scale=1):
|
||||
with gr.Column():
|
||||
llm_model = gr.Radio(llm_model_dict_list,
|
||||
label="llm model",
|
||||
label="LLM 模型",
|
||||
value="chatglm-6b",
|
||||
interactive=True)
|
||||
LLM_HISTORY_LEN = gr.Slider(0,
|
||||
llm_history_len = gr.Slider(0,
|
||||
10,
|
||||
value=3,
|
||||
step=1,
|
||||
label="LLM history len",
|
||||
interactive=True)
|
||||
embedding_model = gr.Radio(embedding_model_dict_list,
|
||||
label="embedding model",
|
||||
label="Embedding 模型",
|
||||
value="text2vec",
|
||||
interactive=True)
|
||||
VECTOR_SEARCH_TOP_K = gr.Slider(1,
|
||||
top_k = gr.Slider(1,
|
||||
20,
|
||||
value=6,
|
||||
step=1,
|
||||
label="vector search top k",
|
||||
label="向量匹配 top k",
|
||||
interactive=True)
|
||||
load_model_button = gr.Button("step.1:setting")
|
||||
load_model_button.click(lambda *args:
|
||||
kb.init_cfg(args[0], args[1], args[2], args[3]),
|
||||
show_progress=True,
|
||||
api_name="init_cfg",
|
||||
inputs=[llm_model, embedding_model, LLM_HISTORY_LEN,VECTOR_SEARCH_TOP_K]
|
||||
).then(
|
||||
get_model_status, chatbot, chatbot
|
||||
)
|
||||
load_model_button = gr.Button("重新加载模型")
|
||||
|
||||
with gr.Column():
|
||||
# with gr.Column():
|
||||
with gr.Tab("select"):
|
||||
selectFile = gr.Dropdown(file_list,
|
||||
label="content file",
|
||||
|
|
@ -109,43 +128,35 @@ with gr.Blocks(css="""
|
|||
with gr.Tab("upload"):
|
||||
file = gr.File(label="content file",
|
||||
file_types=['.txt', '.md', '.docx', '.pdf']
|
||||
).style(height=100)
|
||||
) # .style(height=100)
|
||||
load_button = gr.Button("重新加载文件")
|
||||
load_model_button.click(reinit_model,
|
||||
show_progress=True,
|
||||
api_name="init_cfg",
|
||||
inputs=[llm_model, embedding_model, llm_history_len, top_k]
|
||||
).then(
|
||||
get_model_status, chatbot, chatbot
|
||||
)
|
||||
# 将上传的文件保存到content文件夹下,并更新下拉框
|
||||
file.upload(upload_file,
|
||||
inputs=file,
|
||||
outputs=selectFile)
|
||||
history = gr.State([])
|
||||
vector_store = gr.State()
|
||||
load_button = gr.Button("step.2:loading")
|
||||
load_button.click(lambda fileName:
|
||||
kb.init_knowledge_vector_store(
|
||||
"content/" + fileName),
|
||||
show_progress=True,
|
||||
api_name="init_knowledge_vector_store",
|
||||
inputs=selectFile,
|
||||
outputs=vector_store
|
||||
).then(
|
||||
get_file_status,
|
||||
chatbot,
|
||||
chatbot,
|
||||
show_progress=True,
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
query = gr.Textbox(show_label=False,
|
||||
placeholder="Prompts",
|
||||
lines=1,
|
||||
value="用200字总结一下"
|
||||
).style(container=False)
|
||||
with gr.Column(scale=1):
|
||||
generate_button = gr.Button("step.3:asking",
|
||||
elem_classes="importantButton")
|
||||
generate_button.click(get_answer,
|
||||
[query, vector_store, chatbot],
|
||||
[chatbot, history],
|
||||
api_name="get_knowledge_based_answer"
|
||||
)
|
||||
# load_button.click(local_doc_qa.init_knowledge_vector_store,
|
||||
# show_progress=True,
|
||||
# api_name="init_knowledge_vector_store",
|
||||
# inputs=selectFile,
|
||||
# outputs=vs_path
|
||||
# ).then(
|
||||
# get_file_status,
|
||||
# chatbot,
|
||||
# chatbot,
|
||||
# show_progress=True,
|
||||
# )
|
||||
# query.submit(get_answer,
|
||||
# [query, vs_path, chatbot],
|
||||
# [chatbot, history],
|
||||
# api_name="get_knowledge_based_answer"
|
||||
# )
|
||||
|
||||
demo.queue(concurrency_count=3).launch(
|
||||
server_name='0.0.0.0', share=False, inbrowser=False)
|
||||
|
|
|
|||
Loading…
Reference in New Issue