merge master
This commit is contained in:
commit
4150af003a
|
|
@ -178,6 +178,6 @@ Web UI 可以实现如下功能:
|
|||
- [ ] 实现调用 API 的 Web UI Demo
|
||||
|
||||
## 项目交流群
|
||||

|
||||

|
||||
|
||||
🎉 langchain-ChatGLM 项目交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
|
||||
|
|
|
|||
38
api.py
38
api.py
|
|
@ -170,36 +170,32 @@ async def delete_docs(
|
|||
|
||||
|
||||
async def chat(
|
||||
knowledge_base_id: str = Body(..., description="知识库名字", example="kb1"),
|
||||
question: str = Body(..., description="问题", example="工伤保险是什么?"),
|
||||
knowledge_base_id: str = Body(..., description="Knowledge Base Name", example="kb1"),
|
||||
question: str = Body(..., description="Question", example="工伤保险是什么?"),
|
||||
history: List[List[str]] = Body(
|
||||
[],
|
||||
description="问题及答案的历史记录",
|
||||
description="History of previous questions and answers",
|
||||
example=[
|
||||
[
|
||||
"这里是问题,如:工伤保险是什么?",
|
||||
"答案:工伤保险是指用人单位按照国家规定,为本单位的职工和用人单位的其他人员,缴纳工伤保险费,由保险机构按照国家规定的标准,给予工伤保险待遇的社会保险制度。",
|
||||
"工伤保险是什么?",
|
||||
"工伤保险是指用人单位按照国家规定,为本单位的职工和用人单位的其他人员,缴纳工伤保险费,由保险机构按照国家规定的标准,给予工伤保险待遇的社会保险制度。",
|
||||
]
|
||||
],
|
||||
),
|
||||
):
|
||||
vs_path = os.path.join(VS_ROOT_PATH, knowledge_base_id)
|
||||
resp = {}
|
||||
if os.path.exists(vs_path) and knowledge_base_id:
|
||||
for resp, history in local_doc_qa.get_knowledge_based_answer(
|
||||
query=question, vs_path=vs_path, chat_history=history, streaming=False
|
||||
):
|
||||
pass
|
||||
source_documents = [
|
||||
f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
|
||||
f"""相关度:{doc.metadata['score']}\n\n"""
|
||||
for inum, doc in enumerate(resp["source_documents"])
|
||||
]
|
||||
else:
|
||||
for resp_s, history in local_doc_qa.llm._call(prompt=question, history=history, streaming=False):
|
||||
pass
|
||||
resp["result"] = resp_s
|
||||
source_documents =[("当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。")]
|
||||
if not os.path.exists(vs_path):
|
||||
raise ValueError(f"Knowledge base {knowledge_base_id} not found")
|
||||
|
||||
for resp, history in local_doc_qa.get_knowledge_based_answer(
|
||||
query=question, vs_path=vs_path, chat_history=history, streaming=True
|
||||
):
|
||||
pass
|
||||
source_documents = [
|
||||
f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
|
||||
f"""相关度:{doc.metadata['score']}\n\n"""
|
||||
for inum, doc in enumerate(resp["source_documents"])
|
||||
]
|
||||
|
||||
return ChatMessage(
|
||||
question=question,
|
||||
|
|
|
|||
Binary file not shown.
|
Before Width: | Height: | Size: 276 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 265 KiB |
|
|
@ -3,56 +3,73 @@ import re
|
|||
from typing import List
|
||||
from configs.model_config import SENTENCE_SIZE
|
||||
|
||||
|
||||
class ChineseTextSplitter(CharacterTextSplitter):
|
||||
def __init__(self, pdf: bool = False, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.pdf = pdf
|
||||
|
||||
def split_text1(self, text: str) -> List[str]:
|
||||
def split_text1(self, text: str, use_document_segmentation: bool = False) -> List[str]:
|
||||
# use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278
|
||||
# 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
# 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id
|
||||
if self.pdf:
|
||||
text = re.sub(r"\n{3,}", "\n", text)
|
||||
text = re.sub('\s', ' ', text)
|
||||
text = text.replace("\n\n", "")
|
||||
sent_sep_pattern = re.compile('([﹒﹔;﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
|
||||
sent_list = []
|
||||
for ele in sent_sep_pattern.split(text):
|
||||
if sent_sep_pattern.match(ele) and sent_list:
|
||||
sent_list[-1] += ele
|
||||
elif ele:
|
||||
sent_list.append(ele)
|
||||
if use_document_segmentation:
|
||||
result = p(documents=text)
|
||||
sent_list = [i for i in result["text"].split("\n\t") if i]
|
||||
else:
|
||||
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
|
||||
sent_list = []
|
||||
for ele in sent_sep_pattern.split(text):
|
||||
if sent_sep_pattern.match(ele) and sent_list:
|
||||
sent_list[-1] += ele
|
||||
elif ele:
|
||||
sent_list.append(ele)
|
||||
return sent_list
|
||||
|
||||
def split_text(self, text: str) -> List[str]:
|
||||
def split_text(self, text: str, use_document_segmentation: bool = False) -> List[str]:
|
||||
if self.pdf:
|
||||
text = re.sub(r"\n{3,}", r"\n", text)
|
||||
text = re.sub('\s', " ", text)
|
||||
text = re.sub("\n\n", "", text)
|
||||
text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
|
||||
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
|
||||
text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
|
||||
text = re.sub(r'([;;!?。!?\?]["’”」』]{0,2})([^;;!?,。!?\?])', r'\1\n\2', text)
|
||||
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后,注意前面的几句都小心保留了双引号
|
||||
text = text.rstrip() # 段尾如果有多余的\n就去掉它
|
||||
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
|
||||
ls = [i for i in text.split("\n") if i]
|
||||
for ele in ls:
|
||||
if len(ele) > SENTENCE_SIZE:
|
||||
ele1 = re.sub(r'([,,.]["’”」』]{0,2})([^,,.])', r'\1\n\2', ele)
|
||||
ele1_ls = ele1.split("\n")
|
||||
for ele_ele1 in ele1_ls:
|
||||
if len(ele_ele1) > SENTENCE_SIZE:
|
||||
ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)
|
||||
ele2_ls = ele_ele2.split("\n")
|
||||
for ele_ele2 in ele2_ls:
|
||||
if len(ele_ele2) > SENTENCE_SIZE:
|
||||
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
|
||||
ele2_id = ele2_ls.index(ele_ele2)
|
||||
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[ele2_id + 1:]
|
||||
ele_id = ele1_ls.index(ele_ele1)
|
||||
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
|
||||
|
||||
id = ls.index(ele)
|
||||
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id+1:]
|
||||
return ls
|
||||
|
||||
if use_document_segmentation:
|
||||
from modelscope.pipelines import pipeline
|
||||
p = pipeline(
|
||||
task="document-segmentation",
|
||||
model='damo/nlp_bert_document-segmentation_chinese-base',
|
||||
device="cpu")
|
||||
result = p(documents=text)
|
||||
sent_list = [i for i in result["text"].split("\n\t") if i]
|
||||
return sent_list
|
||||
else:
|
||||
text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
|
||||
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
|
||||
text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
|
||||
text = re.sub(r'([;;!?。!?\?]["’”」』]{0,2})([^;;!?,。!?\?])', r'\1\n\2', text)
|
||||
# 如果双引号前有终止符,那么双引号才是句子的终点,把分句符\n放到双引号后,注意前面的几句都小心保留了双引号
|
||||
text = text.rstrip() # 段尾如果有多余的\n就去掉它
|
||||
# 很多规则中会考虑分号;,但是这里我把它忽略不计,破折号、英文双引号等同样忽略,需要的再做些简单调整即可。
|
||||
ls = [i for i in text.split("\n") if i]
|
||||
for ele in ls:
|
||||
if len(ele) > SENTENCE_SIZE:
|
||||
ele1 = re.sub(r'([,,.]["’”」』]{0,2})([^,,.])', r'\1\n\2', ele)
|
||||
ele1_ls = ele1.split("\n")
|
||||
for ele_ele1 in ele1_ls:
|
||||
if len(ele_ele1) > SENTENCE_SIZE:
|
||||
ele_ele2 = re.sub(r'([\n]{1,}| {2,}["’”」』]{0,2})([^\s])', r'\1\n\2', ele_ele1)
|
||||
ele2_ls = ele_ele2.split("\n")
|
||||
for ele_ele2 in ele2_ls:
|
||||
if len(ele_ele2) > SENTENCE_SIZE:
|
||||
ele_ele3 = re.sub('( ["’”」』]{0,2})([^ ])', r'\1\n\2', ele_ele2)
|
||||
ele2_id = ele2_ls.index(ele_ele2)
|
||||
ele2_ls = ele2_ls[:ele2_id] + [i for i in ele_ele3.split("\n") if i] + ele2_ls[
|
||||
ele2_id + 1:]
|
||||
ele_id = ele1_ls.index(ele_ele1)
|
||||
ele1_ls = ele1_ls[:ele_id] + [i for i in ele2_ls if i] + ele1_ls[ele_id + 1:]
|
||||
|
||||
id = ls.index(ele)
|
||||
ls = ls[:id] + [i for i in ele1_ls if i] + ls[id + 1:]
|
||||
return ls
|
||||
|
|
|
|||
Loading…
Reference in New Issue