merge dev_allinone

This commit is contained in:
imClumsyPanda 2023-08-17 22:29:26 +08:00
commit 4fb2e2198b
12 changed files with 658 additions and 124 deletions

2
.gitignore vendored
View File

@ -4,4 +4,4 @@ logs
.idea/
__pycache__/
knowledge_base/
configs/model_config.py
configs/*.py

105
README.md
View File

@ -181,9 +181,11 @@ $ git clone https://huggingface.co/moka-ai/m3e-base
### 3. 设置配置项
复制文件 [configs/model_config.py.example](configs/model_config.py.example) 存储至项目路径下 `./configs` 路径下,并重命名为 `model_config.py`
复制模型相关参数配置模板文件 [configs/model_config.py.example](configs/model_config.py.example) 存储至项目路径下 `./configs` 路径下,并重命名为 `model_config.py`
在开始执行 Web UI 或命令行交互前,请先检查 `configs/model_config.py` 中的各项模型参数设计是否符合需求:
复制服务相关参数配置模板文件 [configs/server_config.py.example](configs/server_config.py.example) 存储至项目路径下 `./configs` 路径下,并重命名为 `server_config.py`
在开始执行 Web UI 或命令行交互前,请先检查 `configs/model_config.py``configs/server_config.py` 中的各项模型参数设计是否符合需求:
- 请确认已下载至本地的 LLM 模型本地存储路径写在 `llm_model_dict` 对应模型的 `local_model_path` 属性中,如:
@ -214,7 +216,6 @@ embedding_model_dict = {
```shell
$ python init_database.py
```
- 如果您是第一次运行本项目,知识库尚未建立,或者配置文件中的知识库类型、嵌入模型发生变化,需要以下命令初始化或重建知识库:
```shell
@ -244,6 +245,7 @@ $ python server/llm_api.py
```
项目支持多卡加载,需在 llm_api.py 中修改 create_model_worker_app 函数中,修改如下三个参数:
```python
gpus=None,
num_gpus=1,
@ -258,7 +260,7 @@ max_gpu_memory="20GiB"
##### 5.1.2 基于命令行脚本 llm_api_launch.py 启动 LLM 服务
⚠️ **注意:**
⚠️ **注意:**
**1.llm_api_launch.py脚本原生仅适用于linux,mac设备需要安装对应的linux命令,win平台请使用wls;**
@ -275,11 +277,13 @@ $ python server/llm_api_launch.py
```shell
$ python server/llm_api_launch.py --model-path-address model1@host1@port1 model2@host2@port2
```
如果出现server端口占用情况需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:
```shell
$ python server/llm_api_launch.py --server-port 8887
```
如果要启动多卡加载,示例命令如下:
```shell
@ -354,7 +358,6 @@ $ streamlit run webui.py --server.port 666
- Web UI 对话界面:
![](img/webui_0813_0.png)
- Web UI 知识库管理页面:
![](img/webui_0813_1.png)
@ -363,86 +366,38 @@ $ streamlit run webui.py --server.port 666
### 6. 一键启动
⚠️ **注意:**
**1. 一键启动脚本仅原生适用于Linux,Mac 设备需要安装对应的linux命令, Winodws 平台请使用 WLS;**
**2. 加载非默认模型需要用命令行参数 `--model-path-address` 指定模型,不会读取 `model_config.py` 配置。**
#### 6.1 API 服务一键启动脚本
新增 API 一键启动脚本,可一键开启 FastChat 后台服务及本项目提供的 API 服务,调用示例:
调用默认模型:
更新一键启动脚本 startup.py,一键启动所有 Fastchat 服务、API 服务、WebUI 服务,示例代码:
```shell
$ python server/api_allinone.py
$ python startup.py --all-webui
```
加载多个非默认模型:
并可使用 `Ctrl + C` 直接关闭所有运行服务。
可选参数包括 `--all-webui`, `--all-api`, `--llm-api`, `--controller`, `--openai-api`,
`--model-worker`, `--api`, `--webui`,其中:
- `--all-webui` 为一键启动 WebUI 所有依赖服务;
- `--all-api` 为一键启动 API 所有依赖服务;
- `--llm-api` 为一键启动 Fastchat 所有依赖的 LLM 服务;
- `--openai-api` 为仅启动 FastChat 的 controller 和 openai-api-server 服务;
- 其他为单独服务启动选项。
若想指定非默认模型,需要用 `--model-name` 选项,示例:
```shell
$ python server/api_allinone.py --model-path-address model1@host1@port1 model2@host2@port2
$ python startup.py --all-webui --model-name Qwen-7B-Chat
```
如果出现server端口占用情况需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:
**注意:**
```shell
$ python server/api_allinone.py --server-port 8887
```
**1. startup 脚本用多进程方式启动各模块的服务,可能会导致打印顺序问题,请等待全部服务发起后再调用,并根据默认或指定端口调用服务(默认 LLM API 服务端口:`127.0.0.1:8888`,默认 API 服务端口:`127.0.0.1:7861`,默认 WebUI 服务端口:`本机IP8501`)**
多卡启动:
```shell
python server/api_allinone.py --model-path-address model@host@port --num-gpus 2 --gpus 0,1 --max-gpu-memory 10GiB
```
其他参数详见各脚本及 FastChat 服务说明。
#### 6.2 webui一键启动脚本
加载本地模型:
```shell
$ python webui_allinone.py
```
调用远程 API 服务:
```shell
$ python webui_allinone.py --use-remote-api
```
如果出现server端口占用情况需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:
```shell
$ python webui_allinone.py --server-port 8887
```
后台运行webui服务
```shell
$ python webui_allinone.py --nohup
```
加载多个非默认模型:
```shell
$ python webui_allinone.py --model-path-address model1@host1@port1 model2@host2@port2
```
多卡启动:
```shell
$ python webui_alline.py --model-path-address model@host@port --num-gpus 2 --gpus 0,1 --max-gpu-memory 10GiB
```
其他参数详见各脚本及 Fastchat 服务说明。
上述两个一键启动脚本会后台运行多个服务,如要停止所有服务,可使用 `shutdown_all.sh` 脚本:
```shell
bash shutdown_all.sh
```
**2.服务启动时间示设备不同而不同,约 3-10 分钟,如长时间没有启动请前往 `./logs`目录下监控日志,定位问题。**
## 常见问题

View File

@ -1 +1,4 @@
from .model_config import *
from .model_config import *
from .server_config import *
VERSION = "v0.2.1-preview"

View File

@ -1,14 +1,11 @@
import os
import logging
import torch
import argparse
import json
# 日志格式
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
import json
# 在以下字典中修改属性值以指定本地embedding模型存储位置
@ -52,13 +49,13 @@ llm_model_dict = {
"chatglm2-6b": {
"local_model_path": "THUDM/chatglm2-6b",
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
"api_key": "EMPTY"
},
"chatglm2-6b-32k": {
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_base_url": "http://localhost:8888/v1", # "URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
"api_key": "EMPTY"
},

View File

@ -0,0 +1,100 @@
from .model_config import LLM_MODEL, LLM_DEVICE
# API 是否开启跨域默认为False如果需要开启请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
# 各服务器默认绑定host
DEFAULT_BIND_HOST = "127.0.0.1"
# webui.py server
WEBUI_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": 8501,
}
# api.py server
API_SERVER = {
"host": DEFAULT_BIND_HOST,
"port": 7861,
}
# fastchat openai_api server
FSCHAT_OPENAI_API = {
"host": DEFAULT_BIND_HOST,
"port": 8888, # model_config.llm_model_dict中模型配置的api_base_url需要与这里一致。
}
# fastchat model_worker server
# 这些模型必须是在model_config.llm_model_dict中正确配置的。
# 在启动startup.py时可用通过`--model-worker --model-name xxxx`指定模型不指定则为LLM_MODEL
FSCHAT_MODEL_WORKERS = {
LLM_MODEL: {
"host": DEFAULT_BIND_HOST,
"port": 20002,
"device": LLM_DEVICE,
# todo: 多卡加载需要配置的参数
"gpus": None,
"numgpus": 1,
# 以下为非常用参数,可根据需要配置
# "max_gpu_memory": "20GiB",
# "load_8bit": False,
# "cpu_offloading": None,
# "gptq_ckpt": None,
# "gptq_wbits": 16,
# "gptq_groupsize": -1,
# "gptq_act_order": False,
# "awq_ckpt": None,
# "awq_wbits": 16,
# "awq_groupsize": -1,
# "model_names": [LLM_MODEL],
# "conv_template": None,
# "limit_worker_concurrency": 5,
# "stream_interval": 2,
# "no_register": False,
},
}
# fastchat multi model worker server
FSCHAT_MULTI_MODEL_WORKERS = {
# todo
}
# fastchat controller server
FSCHAT_CONTROLLER = {
"host": DEFAULT_BIND_HOST,
"port": 20001,
"dispatch_method": "shortest_queue",
}
# 以下不要更改
def fschat_controller_address() -> str:
host = FSCHAT_CONTROLLER["host"]
port = FSCHAT_CONTROLLER["port"]
return f"http://{host}:{port}"
def fschat_model_worker_address(model_name: str = LLM_MODEL) -> str:
if model := FSCHAT_MODEL_WORKERS.get(model_name):
host = model["host"]
port = model["port"]
return f"http://{host}:{port}"
def fschat_openai_api_address() -> str:
host = FSCHAT_OPENAI_API["host"]
port = FSCHAT_OPENAI_API["port"]
return f"http://{host}:{port}"
def api_address() -> str:
host = API_SERVER["host"]
port = API_SERVER["port"]
return f"http://{host}:{port}"
def webui_address() -> str:
host = WEBUI_SERVER["host"]
port = WEBUI_SERVER["port"]
return f"http://{host}:{port}"

View File

@ -4,7 +4,9 @@ import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import NLTK_DATA_PATH, OPEN_CROSS_DOMAIN
from configs.model_config import NLTK_DATA_PATH
from configs.server_config import OPEN_CROSS_DOMAIN
from configs import VERSION
import argparse
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
@ -14,11 +16,10 @@ from server.chat import (chat, knowledge_base_chat, openai_chat,
from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb
from server.knowledge_base.kb_doc_api import (list_docs, upload_doc, delete_doc,
update_doc, download_doc, recreate_vector_store,
search_docs, DocumentWithScore)
search_docs, DocumentWithScore)
from server.utils import BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline
from typing import List
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
@ -27,7 +28,10 @@ async def document():
def create_app():
app = FastAPI(title="Langchain-Chatchat API Server")
app = FastAPI(
title="Langchain-Chatchat API Server",
version=VERSION
)
MakeFastAPIOffline(app)
# Add CORS middleware to allow all origins
# 在config.py中设置OPEN_DOMAIN=True允许跨域
@ -75,10 +79,10 @@ def create_app():
)(create_kb)
app.post("/knowledge_base/delete_knowledge_base",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库"
)(delete_kb)
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库"
)(delete_kb)
app.get("/knowledge_base/list_docs",
tags=["Knowledge Base Management"],
@ -87,10 +91,10 @@ def create_app():
)(list_docs)
app.post("/knowledge_base/search_docs",
tags=["Knowledge Base Management"],
response_model=List[DocumentWithScore],
summary="搜索知识库"
)(search_docs)
tags=["Knowledge Base Management"],
response_model=List[DocumentWithScore],
summary="搜索知识库"
)(search_docs)
app.post("/knowledge_base/upload_doc",
tags=["Knowledge Base Management"],
@ -99,10 +103,10 @@ def create_app():
)(upload_doc)
app.post("/knowledge_base/delete_doc",
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库内指定文件"
)(delete_doc)
tags=["Knowledge Base Management"],
response_model=BaseResponse,
summary="删除知识库内指定文件"
)(delete_doc)
app.post("/knowledge_base/update_doc",
tags=["Knowledge Base Management"],

View File

@ -15,7 +15,7 @@ import os
sys.path.append(os.path.dirname(__file__))
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from llm_api_launch import launch_all, parser, controller_args, worker_args, server_args
from llm_api_stale import launch_all, parser, controller_args, worker_args, server_args
from api import create_app
import uvicorn

View File

@ -20,51 +20,50 @@ from webui_pages.utils import *
from streamlit_option_menu import option_menu
from webui_pages import *
import os
from server.llm_api_launch import string_args, launch_all, controller_args, worker_args, server_args, LOG_PATH
from server.llm_api_stale import string_args,launch_all,controller_args,worker_args,server_args,LOG_PATH
from server.api_allinone import parser, api_args
from server.api_allinone_stale import parser, api_args
import subprocess
parser.add_argument("--use-remote-api", action="store_true")
parser.add_argument("--nohup", action="store_true")
parser.add_argument("--server.port", type=int, default=8501)
parser.add_argument("--theme.base", type=str, default='"light"')
parser.add_argument("--theme.primaryColor", type=str, default='"#165dff"')
parser.add_argument("--theme.secondaryBackgroundColor", type=str, default='"#f5f5f5"')
parser.add_argument("--theme.textColor", type=str, default='"#000000"')
web_args = ["server.port", "theme.base", "theme.primaryColor", "theme.secondaryBackgroundColor", "theme.textColor"]
parser.add_argument("--use-remote-api",action="store_true")
parser.add_argument("--nohup",action="store_true")
parser.add_argument("--server.port",type=int,default=8501)
parser.add_argument("--theme.base",type=str,default='"light"')
parser.add_argument("--theme.primaryColor",type=str,default='"#165dff"')
parser.add_argument("--theme.secondaryBackgroundColor",type=str,default='"#f5f5f5"')
parser.add_argument("--theme.textColor",type=str,default='"#000000"')
web_args = ["server.port","theme.base","theme.primaryColor","theme.secondaryBackgroundColor","theme.textColor"]
def launch_api(args, args_list=api_args, log_name=None):
def launch_api(args,args_list=api_args,log_name=None):
print("Launching api ...")
print("启动API服务...")
if not log_name:
log_name = f"{LOG_PATH}api_{args.api_host}_{args.api_port}"
print(f"logs on api are written in {log_name}")
print(f"API日志位于{log_name}下,如启动异常请查看日志")
args_str = string_args(args, args_list)
args_str = string_args(args,args_list)
api_sh = "python server/{script} {args_str} >{log_name}.log 2>&1 &".format(
script="api.py", args_str=args_str, log_name=log_name)
script="api.py",args_str=args_str,log_name=log_name)
subprocess.run(api_sh, shell=True, check=True)
print("launch api done!")
print("启动API服务完毕.")
def launch_webui(args, args_list=web_args, log_name=None):
def launch_webui(args,args_list=web_args,log_name=None):
print("Launching webui...")
print("启动webui服务...")
if not log_name:
log_name = f"{LOG_PATH}webui"
args_str = string_args(args, args_list)
args_str = string_args(args,args_list)
if args.nohup:
print(f"logs on api are written in {log_name}")
print(f"webui服务日志位于{log_name}下,如启动异常请查看日志")
webui_sh = "streamlit run webui.py {args_str} >{log_name}.log 2>&1 &".format(
args_str=args_str, log_name=log_name)
args_str=args_str,log_name=log_name)
else:
webui_sh = "streamlit run webui.py {args_str}".format(
args_str=args_str)
args_str=args_str)
subprocess.run(webui_sh, shell=True, check=True)
print("launch webui done!")
print("启动webui服务完毕.")
@ -75,10 +74,10 @@ if __name__ == "__main__":
print(f"开始启动webui_allinone,启动LLM服务需要约3-10分钟请耐心等待如长时间未启动请到{LOG_PATH}下查看日志...")
args = parser.parse_args()
print("*" * 80)
print("*"*80)
if not args.use_remote_api:
launch_all(args=args, controller_args=controller_args, worker_args=worker_args, server_args=server_args)
launch_api(args=args, args_list=api_args)
launch_webui(args=args, args_list=web_args)
launch_all(args=args,controller_args=controller_args,worker_args=worker_args,server_args=server_args)
launch_api(args=args,args_list=api_args)
launch_webui(args=args,args_list=web_args)
print("Start webui_allinone.py done!")
print("感谢耐心等待启动webui_allinone完毕。")
print("感谢耐心等待启动webui_allinone完毕。")

456
startup.py Normal file
View File

@ -0,0 +1,456 @@
from multiprocessing import Process, Queue
import multiprocessing as mp
import subprocess
import sys
import os
from pprint import pprint
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, \
logger
from configs.server_config import (WEBUI_SERVER, API_SERVER, OPEN_CROSS_DOMAIN, FSCHAT_CONTROLLER, FSCHAT_MODEL_WORKERS,
FSCHAT_OPENAI_API, fschat_controller_address, fschat_model_worker_address,
fschat_openai_api_address, )
from server.utils import MakeFastAPIOffline, FastAPI
import argparse
from typing import Tuple, List
from configs import VERSION
def set_httpx_timeout(timeout=60.0):
import httpx
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
def create_controller_app(
dispatch_method: str,
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.controller import app, Controller
controller = Controller(dispatch_method)
sys.modules["fastchat.serve.controller"].controller = controller
MakeFastAPIOffline(app)
app.title = "FastChat Controller"
return app
def create_model_worker_app(**kwargs) -> Tuple[argparse.ArgumentParser, FastAPI]:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id
import argparse
import threading
import fastchat.serve.model_worker
# workaround to make program exit with Ctrl+c
# it should be deleted after pr is merged by fastchat
def _new_init_heart_beat(self):
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
)
self.heart_beat_thread.start()
ModelWorker.init_heart_beat = _new_init_heart_beat
parser = argparse.ArgumentParser()
args = parser.parse_args([])
# default args. should be deleted after pr is merged by fastchat
args.gpus = None
args.max_gpu_memory = "20GiB"
args.load_8bit = False
args.cpu_offloading = None
args.gptq_ckpt = None
args.gptq_wbits = 16
args.gptq_groupsize = -1
args.gptq_act_order = False
args.awq_ckpt = None
args.awq_wbits = 16
args.awq_groupsize = -1
args.num_gpus = 1
args.model_names = []
args.conv_template = None
args.limit_worker_concurrency = 5
args.stream_interval = 2
args.no_register = False
for k, v in kwargs.items():
setattr(args, k, v)
if args.gpus:
if args.num_gpus is None:
args.num_gpus = len(args.gpus.split(','))
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
gptq_config = GptqConfig(
ckpt=args.gptq_ckpt or args.model_path,
wbits=args.gptq_wbits,
groupsize=args.gptq_groupsize,
act_order=args.gptq_act_order,
)
awq_config = AWQConfig(
ckpt=args.awq_ckpt or args.model_path,
wbits=args.awq_wbits,
groupsize=args.awq_groupsize,
)
worker = ModelWorker(
controller_addr=args.controller_address,
worker_addr=args.worker_address,
worker_id=worker_id,
model_path=args.model_path,
model_names=args.model_names,
limit_worker_concurrency=args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
)
sys.modules["fastchat.serve.model_worker"].worker = worker
sys.modules["fastchat.serve.model_worker"].args = args
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
MakeFastAPIOffline(app)
app.title = f"FastChat LLM Server ({LLM_MODEL})"
return app
def create_openai_api_app(
controller_address: str,
api_keys: List = [],
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
app.add_middleware(
CORSMiddleware,
allow_credentials=True,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app_settings.controller_address = controller_address
app_settings.api_keys = api_keys
MakeFastAPIOffline(app)
app.title = "FastChat OpeanAI API Server"
return app
def _set_app_seq(app: FastAPI, q: Queue, run_seq: int):
if run_seq == 1:
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
q.put(run_seq)
elif run_seq > 1:
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
while True:
no = q.get()
if no != run_seq - 1:
q.put(no)
else:
break
q.put(run_seq)
def run_controller(q: Queue, run_seq: int = 1):
import uvicorn
app = create_controller_app(FSCHAT_CONTROLLER.get("dispatch_method"))
_set_app_seq(app, q, run_seq)
host = FSCHAT_CONTROLLER["host"]
port = FSCHAT_CONTROLLER["port"]
uvicorn.run(app, host=host, port=port)
def run_model_worker(
model_name: str = LLM_MODEL,
controller_address: str = "",
q: Queue = None,
run_seq: int = 2,
):
import uvicorn
kwargs = FSCHAT_MODEL_WORKERS[LLM_MODEL].copy()
host = kwargs.pop("host")
port = kwargs.pop("port")
model_path = llm_model_dict[model_name].get("local_model_path", "")
kwargs["model_path"] = model_path
kwargs["model_names"] = [model_name]
kwargs["controller_address"] = controller_address or fschat_controller_address()
kwargs["worker_address"] = fschat_model_worker_address()
app = create_model_worker_app(**kwargs)
_set_app_seq(app, q, run_seq)
uvicorn.run(app, host=host, port=port)
def run_openai_api(q: Queue, run_seq: int = 3):
import uvicorn
controller_addr = fschat_controller_address()
app = create_openai_api_app(controller_addr) # todo: not support keys yet.
_set_app_seq(app, q, run_seq)
host = FSCHAT_OPENAI_API["host"]
port = FSCHAT_OPENAI_API["port"]
uvicorn.run(app, host=host, port=port)
def run_api_server(q: Queue, run_seq: int = 4):
from server.api import create_app
import uvicorn
app = create_app()
_set_app_seq(app, q, run_seq)
host = API_SERVER["host"]
port = API_SERVER["port"]
uvicorn.run(app, host=host, port=port)
def run_webui(q: Queue, run_seq: int = 5):
host = WEBUI_SERVER["host"]
port = WEBUI_SERVER["port"]
while True:
no = q.get()
if no != run_seq - 1:
q.put(no)
else:
break
q.put(run_seq)
p = subprocess.Popen(["streamlit", "run", "webui.py",
"--server.address", host,
"--server.port", str(port)])
p.wait()
def parse_args() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--all-webui",
action="store_true",
help="run fastchat's controller/model_worker/openai_api servers, run api.py and webui.py",
dest="all_webui",
)
parser.add_argument(
"--all-api",
action="store_true",
help="run fastchat's controller/model_worker/openai_api servers, run api.py and webui.py",
dest="all_api",
)
parser.add_argument(
"--llm-api",
action="store_true",
help="run fastchat's controller/model_worker/openai_api servers, run api.py and webui.py",
dest="llm_api",
)
parser.add_argument(
"-o",
"--openai-api",
action="store_true",
help="run fastchat controller/openai_api servers",
dest="openai_api",
)
parser.add_argument(
"-m",
"--model-worker",
action="store_true",
help="run fastchat model_worker server with specified model name. specify --model-name if not using default LLM_MODEL",
dest="model_worker",
)
parser.add_argument(
"-n"
"--model-name",
type=str,
default=LLM_MODEL,
help="specify model name for model worker.",
dest="model_name",
)
parser.add_argument(
"-c"
"--controller",
type=str,
help="specify controller address the worker is registered to. default is server_config.FSCHAT_CONTROLLER",
dest="controller_address",
)
parser.add_argument(
"--api",
action="store_true",
help="run api.py server",
dest="api",
)
parser.add_argument(
"-w",
"--webui",
action="store_true",
help="run webui.py server",
dest="webui",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
import platform
import time
import langchain
import fastchat
from configs.server_config import api_address, webui_address
mp.set_start_method("spawn")
queue = Queue()
args = parse_args()
if args.all_webui:
args.openai_api = True
args.model_worker = True
args.api = True
args.webui = True
elif args.all_api:
args.openai_api = True
args.model_worker = True
args.api = True
args.webui = False
elif args.llm_api:
args.openai_api = True
args.model_worker = True
args.api = False
args.webui = False
logger.info(f"正在启动服务:")
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
processes = {}
if args.openai_api:
process = Process(
target=run_controller,
name=f"controller({os.getpid()})",
args=(queue, len(processes) + 1),
daemon=True,
)
process.start()
processes["controller"] = process
process = Process(
target=run_openai_api,
name=f"openai_api({os.getpid()})",
args=(queue, len(processes) + 1),
daemon=True,
)
process.start()
processes["openai_api"] = process
if args.model_worker:
process = Process(
target=run_model_worker,
name=f"model_worker({os.getpid()})",
args=(args.model_name, args.controller_address, queue, len(processes) + 1),
daemon=True,
)
process.start()
processes["model_worker"] = process
if args.api:
process = Process(
target=run_api_server,
name=f"API Server{os.getpid()})",
args=(queue, len(processes) + 1),
daemon=True,
)
process.start()
processes["api"] = process
if args.webui:
process = Process(
target=run_webui,
name=f"WEBUI Server{os.getpid()})",
args=(queue, len(processes) + 1),
daemon=True,
)
process.start()
processes["webui"] = process
try:
# log infors
while True:
no = queue.get()
if no == len(processes):
time.sleep(0.5)
print("\n\n")
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
print(f"操作系统:{platform.platform()}.")
print(f"python版本{sys.version}")
print(f"项目版本:{VERSION}")
print(f"langchain版本{langchain.__version__}. fastchat版本{fastchat.__version__}")
print("\n")
print(f"当前LLM模型{LLM_MODEL} @ {LLM_DEVICE}")
pprint(llm_model_dict[LLM_MODEL])
print(f"当前Embbedings模型 {EMBEDDING_MODEL} @ {EMBEDDING_DEVICE}")
print("\n")
print(f"服务端运行信息:")
if args.openai_api:
print(f" OpenAI API Server: {fschat_openai_api_address()}/v1")
print("请确认llm_model_dict中配置的api_base_url与上面地址一致。")
if args.api:
print(f" Chatchat API Server: {api_address()}")
if args.webui:
print(f" Chatchat WEBUI Server: {webui_address()}")
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
print("\n\n")
break
else:
queue.put(no)
if model_worker_process := processes.get("model_worker"):
model_worker_process.join()
for name, process in processes.items():
if name != "model_worker":
process.join()
except:
if model_worker_process := processes.get("model_worker"):
model_worker_process.terminate()
for name, process in processes.items():
if name != "model_worker":
process.terminate()
# 服务启动后接口调用示例:
# import openai
# openai.api_key = "EMPTY" # Not support yet
# openai.api_base = "http://localhost:8888/v1"
# model = "chatglm2-6b"
# # create a chat completion
# completion = openai.ChatCompletion.create(
# model=model,
# messages=[{"role": "user", "content": "Hello! What is your name?"}]
# )
# # print the completion
# print(completion.choices[0].message.content)

View File

@ -28,4 +28,14 @@ if __name__ == "__main__":
for line in response.iter_content(decode_unicode=True):
print(line, flush=True)
else:
print("Error:", response.status_code)
print("Error:", response.status_code)
r = requests.post(
openai_url + "/chat/completions",
json={"model": LLM_MODEL, "messages": "你好", "max_tokens": 1000})
data = r.json()
print(f"/chat/completions\n")
print(data)
assert "choices" in data

View File

@ -9,6 +9,7 @@ from webui_pages.utils import *
from streamlit_option_menu import option_menu
from webui_pages import *
import os
from configs import VERSION
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False)
@ -17,6 +18,11 @@ if __name__ == "__main__":
"Langchain-Chatchat WebUI",
os.path.join("img", "chatchat_icon_blue_square_v2.png"),
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/chatchat-space/Langchain-Chatchat',
'Report a bug': "https://github.com/chatchat-space/Langchain-Chatchat/issues",
'About': f"""欢迎使用 Langchain-Chatchat WebUI {VERSION}"""
}
)
if not chat_box.chat_inited:
@ -35,7 +41,7 @@ if __name__ == "__main__":
"func": knowledge_base_page,
},
}
with st.sidebar:
st.image(
os.path.join(
@ -44,6 +50,10 @@ if __name__ == "__main__":
),
use_column_width=True
)
st.caption(
f"""<p align="right">当前版本:{VERSION}</p>""",
unsafe_allow_html=True,
)
options = list(pages)
icons = [x["icon"] for x in pages.values()]