add ES function

This commit is contained in:
唐国梁 2023-09-14 07:54:42 +08:00
parent f1f8ab80e4
commit 6ad8aee88c
10 changed files with 193 additions and 0 deletions

BIN
.DS_Store vendored Normal file

Binary file not shown.

BIN
docs/.DS_Store vendored Normal file

Binary file not shown.

BIN
docs/docker/.DS_Store vendored Normal file

Binary file not shown.

BIN
docs/docker/vector_db/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -0,0 +1,29 @@
# 实现基于ES的数据插入、检索、删除、更新
```shell
author: 唐国梁Tommy
e-mail: flytang186@qq.com
如果遇到任何问题,可以与我联系,我这边部署后服务是没有问题的。
```
## 第1步ES docker部署
```shell
docker network create elastic
docker run -id --name elasticsearch --net elastic -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e "xpack.security.enabled=false" -e "xpack.security.http.ssl.enabled=false" -t docker.elastic.co/elasticsearch/elasticsearch:8.8.2
```
### 第2步Kibana docker部署
**注意Kibana版本与ES保持一致**
```shell
docker pull docker.elastic.co/kibana/kibana:{version}
docker run --name kibana --net elastic -p 5601:5601 docker.elastic.co/kibana/kibana:{version}
```
### 第3步核心代码
```shell
1. 核心代码路径
server/knowledge_base/kb_service/es_kb_service.py
2. 需要在 configs/model_config.py 中 配置 ES参数IP PORT
```

BIN
server/.DS_Store vendored Normal file

Binary file not shown.

BIN
server/db/.DS_Store vendored Normal file

Binary file not shown.

BIN
server/knowledge_base/.DS_Store vendored Normal file

Binary file not shown.

View File

@ -34,6 +34,7 @@ class SupportedVSType:
MILVUS = 'milvus'
DEFAULT = 'default'
PG = 'pg'
ES = 'es'
class KBService(ABC):
@ -239,6 +240,9 @@ class KBServiceFactory:
from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
return MilvusKBService(kb_name,
embed_model=embed_model) # other milvus parameters are set in model_config.kbs_config
elif SupportedVSType.ES == vector_store_type:
from server.knowledge_base.kb_service.es_kb_service import ESKBService
return ESKBService(kb_name, embed_model=embed_model)
elif SupportedVSType.DEFAULT == vector_store_type: # kb_exists of default kbservice is False, to make validation easier.
from server.knowledge_base.kb_service.default_kb_service import DefaultKBService
return DefaultKBService(kb_name)

View File

@ -0,0 +1,160 @@
#!/user/bin/env python3
"""
File_Name: es_kb_service.py
Author: TangGuoLiang
Email: 896165277@qq.com
Created: 2023-09-05
"""
from typing import List
import os
import shutil
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores.elasticsearch import ElasticsearchStore
from configs.model_config import KB_ROOT_PATH, EMBEDDING_MODEL, EMBEDDING_DEVICE, CACHED_VS_NUM
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
from server.knowledge_base.utils import load_embeddings
from elasticsearch import Elasticsearch
from configs.model_config import logger
from configs.model_config import kbs_config
class ESKBService(KBService):
def do_init(self):
self.kb_path = self.get_kb_path(self.kb_name)
self.index_name = self.kb_path.split("/")[-1]
self.IP = kbs_config[self.vs_type()]['host']
self.PORT = kbs_config[self.vs_type()]['port']
self.embeddings_model = load_embeddings(self.embed_model, EMBEDDING_DEVICE)
try:
# ES python客户端连接仅连接
self.es_client_python = Elasticsearch(f"{self.IP}:{self.PORT}")
except ConnectionError:
logger.error("连接到 Elasticsearch 失败!")
except Exception as e:
logger.error(f"Error 发生 : {e}")
try:
# langchain ES 连接、创建索引
self.db_init = ElasticsearchStore(
es_url=f"{self.IP}:{self.PORT}",
index_name=self.index_name,
query_field="context",
vector_query_field="vector",
embedding=self.embeddings_model,
)
except ConnectionError:
logger.error("### 连接到 Elasticsearch 失败!")
except Exception as e:
logger.error(f"Error 发生 : {e}")
@staticmethod
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
@staticmethod
def get_vs_path(knowledge_base_name: str):
return os.path.join(ESKBService.get_kb_path(knowledge_base_name), "vector_store")
def do_create_kb(self):
if os.path.exists(self.doc_path):
os.makedirs(os.path.join(self.kb_path, "vector_store"))
def vs_type(self) -> str:
return SupportedVSType.ES
def _load_es(self, docs, embed_model):
# 将docs写入到ES中
try:
# 连接 + 同时写入文档
self.db = ElasticsearchStore.from_documents(
documents=docs,
embedding=embed_model,
es_url= f"{self.IP}:{self.PORT}",
index_name=self.index_name,
distance_strategy="COSINE",
query_field="context",
vector_query_field="vector",
verify_certs=False,
)
except ConnectionError:
logger.error("连接到 Elasticsearch 失败!")
except Exception as e:
logger.error(f"Error 发生 : {e}")
def do_search(self, query:str, top_k: int, score_threshold: float, embeddings: Embeddings):
# 文本相似性检索
docs = self.db_init.similarity_search_with_score(query=query,
k=top_k)
return docs
def do_delete_doc(self, kb_file, **kwargs):
if self.es_client_python.indices.exists(index=self.index_name):
# 从向量数据库中删除索引(文档名称是Keyword)
query = {
"query": {
"term": {
"metadata.source.keyword": kb_file.filepath
}
}
}
# 注意设置size默认返回10个。
search_results = self.es_client_python.search(body=query, size=50)
delete_list = [hit["_id"] for hit in search_results['hits']['hits']]
if len(delete_list) == 0:
return None
else:
for doc_id in delete_list:
try:
self.es_client_python.delete(index=self.index_name,
id=doc_id,
refresh=True)
except Exception as e:
logger.error("ES Docs Delete Error!")
# self.db_init.delete(ids=delete_list)
#self.es_client_python.indices.refresh(index=self.index_name)
def do_add_doc(self, docs: List[Document], **kwargs):
'''向知识库添加文件'''
self._load_es(docs=docs, embed_model=self.embeddings_model)
# 获取 id 和 source , 格式:[{"id": str, "metadata": dict}, ...]
file_path = docs[0].metadata.get("source")
if self.es_client_python.indices.exists(index=self.index_name):
query = {
"query": {
"term": {
"metadata.source.keyword": file_path
}
}
}
search_results = self.es_client_python.search(body=query)
if len(search_results["hits"]["hits"]) == 0:
raise ValueError("召回元素个数为0")
info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]]
return info_docs
def do_clear_vs(self):
"""从知识库删除全部向量"""
if self.es_client_python.indices.exists(index=self.kb_name):
self.es_client_python.indices.delete(index=self.kb_name)
def do_drop_kb(self):
"""删除知识库"""
# self.kb_file: 知识库路径
if os.path.exists(self.kb_path):
shutil.rmtree(self.kb_path)