diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000..a2264a1 Binary files /dev/null and b/.DS_Store differ diff --git a/docs/.DS_Store b/docs/.DS_Store new file mode 100644 index 0000000..fe1d124 Binary files /dev/null and b/docs/.DS_Store differ diff --git a/docs/docker/.DS_Store b/docs/docker/.DS_Store new file mode 100644 index 0000000..839af7f Binary files /dev/null and b/docs/docker/.DS_Store differ diff --git a/docs/docker/vector_db/.DS_Store b/docs/docker/vector_db/.DS_Store new file mode 100644 index 0000000..4443dc2 Binary files /dev/null and b/docs/docker/vector_db/.DS_Store differ diff --git a/docs/docker/vector_db/elasticsearch/ES部署指南.md b/docs/docker/vector_db/elasticsearch/ES部署指南.md new file mode 100644 index 0000000..f461582 --- /dev/null +++ b/docs/docker/vector_db/elasticsearch/ES部署指南.md @@ -0,0 +1,29 @@ + +# 实现基于ES的数据插入、检索、删除、更新 +```shell +author: 唐国梁Tommy +e-mail: flytang186@qq.com + +如果遇到任何问题,可以与我联系,我这边部署后服务是没有问题的。 +``` + +## 第1步:ES docker部署 +```shell +docker network create elastic +docker run -id --name elasticsearch --net elastic -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e "xpack.security.enabled=false" -e "xpack.security.http.ssl.enabled=false" -t docker.elastic.co/elasticsearch/elasticsearch:8.8.2 +``` + +### 第2步:Kibana docker部署 +**注意:Kibana版本与ES保持一致** +```shell +docker pull docker.elastic.co/kibana/kibana:{version} +docker run --name kibana --net elastic -p 5601:5601 docker.elastic.co/kibana/kibana:{version} +``` + +### 第3步:核心代码 +```shell +1. 核心代码路径 +server/knowledge_base/kb_service/es_kb_service.py + +2. 需要在 configs/model_config.py 中 配置 ES参数(IP, PORT)等; +``` \ No newline at end of file diff --git a/server/.DS_Store b/server/.DS_Store new file mode 100644 index 0000000..18140ed Binary files /dev/null and b/server/.DS_Store differ diff --git a/server/db/.DS_Store b/server/db/.DS_Store new file mode 100644 index 0000000..506f7ff Binary files /dev/null and b/server/db/.DS_Store differ diff --git a/server/knowledge_base/.DS_Store b/server/knowledge_base/.DS_Store new file mode 100644 index 0000000..b6f3e4c Binary files /dev/null and b/server/knowledge_base/.DS_Store differ diff --git a/server/knowledge_base/kb_service/base.py b/server/knowledge_base/kb_service/base.py index ca0919e..87f7f9a 100644 --- a/server/knowledge_base/kb_service/base.py +++ b/server/knowledge_base/kb_service/base.py @@ -34,6 +34,7 @@ class SupportedVSType: MILVUS = 'milvus' DEFAULT = 'default' PG = 'pg' + ES = 'es' class KBService(ABC): @@ -239,6 +240,9 @@ class KBServiceFactory: from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService return MilvusKBService(kb_name, embed_model=embed_model) # other milvus parameters are set in model_config.kbs_config + elif SupportedVSType.ES == vector_store_type: + from server.knowledge_base.kb_service.es_kb_service import ESKBService + return ESKBService(kb_name, embed_model=embed_model) elif SupportedVSType.DEFAULT == vector_store_type: # kb_exists of default kbservice is False, to make validation easier. from server.knowledge_base.kb_service.default_kb_service import DefaultKBService return DefaultKBService(kb_name) diff --git a/server/knowledge_base/kb_service/es_kb_service.py b/server/knowledge_base/kb_service/es_kb_service.py new file mode 100644 index 0000000..1812f2b --- /dev/null +++ b/server/knowledge_base/kb_service/es_kb_service.py @@ -0,0 +1,160 @@ +#!/user/bin/env python3 +""" +File_Name: es_kb_service.py +Author: TangGuoLiang +Email: 896165277@qq.com +Created: 2023-09-05 +""" +from typing import List +import os +import shutil +from langchain.embeddings.base import Embeddings +from langchain.schema import Document +from langchain.vectorstores.elasticsearch import ElasticsearchStore +from configs.model_config import KB_ROOT_PATH, EMBEDDING_MODEL, EMBEDDING_DEVICE, CACHED_VS_NUM +from server.knowledge_base.kb_service.base import KBService, SupportedVSType +from server.knowledge_base.utils import load_embeddings +from elasticsearch import Elasticsearch +from configs.model_config import logger +from configs.model_config import kbs_config + +class ESKBService(KBService): + + def do_init(self): + self.kb_path = self.get_kb_path(self.kb_name) + self.index_name = self.kb_path.split("/")[-1] + self.IP = kbs_config[self.vs_type()]['host'] + self.PORT = kbs_config[self.vs_type()]['port'] + self.embeddings_model = load_embeddings(self.embed_model, EMBEDDING_DEVICE) + try: + # ES python客户端连接(仅连接) + self.es_client_python = Elasticsearch(f"{self.IP}:{self.PORT}") + except ConnectionError: + logger.error("连接到 Elasticsearch 失败!") + except Exception as e: + logger.error(f"Error 发生 : {e}") + + try: + # langchain ES 连接、创建索引 + self.db_init = ElasticsearchStore( + es_url=f"{self.IP}:{self.PORT}", + index_name=self.index_name, + query_field="context", + vector_query_field="vector", + embedding=self.embeddings_model, + ) + except ConnectionError: + logger.error("### 连接到 Elasticsearch 失败!") + except Exception as e: + logger.error(f"Error 发生 : {e}") + + @staticmethod + def get_kb_path(knowledge_base_name: str): + return os.path.join(KB_ROOT_PATH, knowledge_base_name) + + @staticmethod + def get_vs_path(knowledge_base_name: str): + return os.path.join(ESKBService.get_kb_path(knowledge_base_name), "vector_store") + + def do_create_kb(self): + if os.path.exists(self.doc_path): + os.makedirs(os.path.join(self.kb_path, "vector_store")) + + def vs_type(self) -> str: + return SupportedVSType.ES + + def _load_es(self, docs, embed_model): + # 将docs写入到ES中 + try: + # 连接 + 同时写入文档 + self.db = ElasticsearchStore.from_documents( + documents=docs, + embedding=embed_model, + es_url= f"{self.IP}:{self.PORT}", + index_name=self.index_name, + distance_strategy="COSINE", + query_field="context", + vector_query_field="vector", + verify_certs=False, + ) + except ConnectionError: + logger.error("连接到 Elasticsearch 失败!") + except Exception as e: + logger.error(f"Error 发生 : {e}") + + + + def do_search(self, query:str, top_k: int, score_threshold: float, embeddings: Embeddings): + # 文本相似性检索 + docs = self.db_init.similarity_search_with_score(query=query, + k=top_k) + return docs + + + def do_delete_doc(self, kb_file, **kwargs): + if self.es_client_python.indices.exists(index=self.index_name): + # 从向量数据库中删除索引(文档名称是Keyword) + query = { + "query": { + "term": { + "metadata.source.keyword": kb_file.filepath + } + } + } + # 注意设置size,默认返回10个。 + search_results = self.es_client_python.search(body=query, size=50) + delete_list = [hit["_id"] for hit in search_results['hits']['hits']] + if len(delete_list) == 0: + return None + else: + for doc_id in delete_list: + try: + self.es_client_python.delete(index=self.index_name, + id=doc_id, + refresh=True) + except Exception as e: + logger.error("ES Docs Delete Error!") + + # self.db_init.delete(ids=delete_list) + #self.es_client_python.indices.refresh(index=self.index_name) + + + def do_add_doc(self, docs: List[Document], **kwargs): + '''向知识库添加文件''' + self._load_es(docs=docs, embed_model=self.embeddings_model) + # 获取 id 和 source , 格式:[{"id": str, "metadata": dict}, ...] + file_path = docs[0].metadata.get("source") + if self.es_client_python.indices.exists(index=self.index_name): + query = { + "query": { + "term": { + "metadata.source.keyword": file_path + } + } + } + search_results = self.es_client_python.search(body=query) + if len(search_results["hits"]["hits"]) == 0: + raise ValueError("召回元素个数为0") + info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]] + return info_docs + + + def do_clear_vs(self): + """从知识库删除全部向量""" + if self.es_client_python.indices.exists(index=self.kb_name): + self.es_client_python.indices.delete(index=self.kb_name) + + + def do_drop_kb(self): + """删除知识库""" + # self.kb_file: 知识库路径 + if os.path.exists(self.kb_path): + shutil.rmtree(self.kb_path) + + + + + + + +