fix the issue uploadding file and embedding take too long time

This commit is contained in:
wvivi2023 2024-04-01 13:54:24 +08:00
parent 5b47cbda32
commit 6ed7002758
5 changed files with 86 additions and 80 deletions

View File

@ -19,7 +19,7 @@ from server.knowledge_base.model.kb_document_model import DocumentWithVSId
from typing import List, Dict from typing import List, Dict
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_similarity
from configs import USE_RANKING from configs import USE_RANKING, appLogger
import jieba import jieba
from typing import List, Dict,Tuple from typing import List, Dict,Tuple
@ -41,12 +41,12 @@ def search_docs(
if query: if query:
print(f"search_docs, query:{query}") print(f"search_docs, query:{query}")
docs = kb.search_docs(query, FIRST_VECTOR_SEARCH_TOP_K, score_threshold) docs = kb.search_docs(query, FIRST_VECTOR_SEARCH_TOP_K, score_threshold)
print(f"search_docs,len of docs {len(docs)}, docs:{docs}") #print(f"search_docs,len of docs {len(docs)}, docs:{docs}")
docs_key = kb.search_content_internal(query,2) docs_key = kb.search_content_internal(query,2)
print(f"search_content_internal, len of docs {len(docs_key)}, docs:{docs_key}") #print(f"search_content_internal, len of docs {len(docs_key)}, docs:{docs_key}")
docs = merge_and_deduplicate(docs, docs_key) docs = merge_and_deduplicate(docs, docs_key)
print(f"after merge_and_deduplicate, len of docs: {len(docs)}, docs:{docs}") #print(f"after merge_and_deduplicate, len of docs: {len(docs)}, docs:{docs}")
if USE_RANKING: if USE_RANKING:
queryList = [] queryList = []
queryList.append(query) queryList.append(query)
@ -57,16 +57,16 @@ def search_docs(
vectorizer = TfidfVectorizer() vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(doc_contents) tfidf_matrix = vectorizer.fit_transform(doc_contents)
print(f"****** search_docs, tfidf_matrix:{tfidf_matrix}") #print(f"****** search_docs, tfidf_matrix:{tfidf_matrix}")
query_vector = vectorizer.transform(queryList) query_vector = vectorizer.transform(queryList)
print(f"****** search_docs, query_vector:{query_vector}") #print(f"****** search_docs, query_vector:{query_vector}")
cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten() cosine_similarities = cosine_similarity(query_vector, tfidf_matrix).flatten()
print(f"****** search_docs, cosine_similarities:{cosine_similarities}") #print(f"****** search_docs, cosine_similarities:{cosine_similarities}")
# 将相似度分数与文档结合 # 将相似度分数与文档结合
docs_with_scores = [(doc, score) for doc, score in zip(docs, cosine_similarities)] docs_with_scores = [(doc, score) for doc, score in zip(docs, cosine_similarities)]
sorted_docs = sorted(docs_with_scores, key=lambda x: x[1], reverse=True) sorted_docs = sorted(docs_with_scores, key=lambda x: x[1], reverse=True)
print(f"****** search_docs, sorted_docs:{sorted_docs}") #print(f"****** search_docs, sorted_docs:{sorted_docs}")
i = 0 i = 0
for doc in sorted_docs: for doc in sorted_docs:
if i>=top_k: if i>=top_k:
@ -74,7 +74,7 @@ def search_docs(
else: else:
data.append(DocumentWithVSId(page_content = doc[0][0].page_content,id=doc[0][0].metadata.get("id"), score=doc[0][1],metadata=doc[0][0].metadata)) data.append(DocumentWithVSId(page_content = doc[0][0].page_content,id=doc[0][0].metadata.get("id"), score=doc[0][1],metadata=doc[0][0].metadata))
i = i+1 i = i+1
print(f"****** search_docs top K , sorted_docs:{data}") #print(f"****** search_docs top K , sorted_docs:{data}")
else: else:
data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs] data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs]
@ -355,7 +355,7 @@ def update_docs(
failed_files = {} failed_files = {}
kb_files = [] kb_files = []
print(f"111111 kb_doc_api update_docs file_name:{file_names},更新的doc 长度:{len(docs)}") appLogger.info(f"111111 kb_doc_api update_docs file_names:{file_names},更新的doc 长度:{len(docs)}")
# 生成需要加载docs的文件列表 # 生成需要加载docs的文件列表
for file_name in file_names: for file_name in file_names:
file_detail = get_file_detail(kb_name=knowledge_base_name, filename=file_name) file_detail = get_file_detail(kb_name=knowledge_base_name, filename=file_name)
@ -363,40 +363,35 @@ def update_docs(
if file_detail.get("custom_docs") and not override_custom_docs: if file_detail.get("custom_docs") and not override_custom_docs:
continue continue
if file_name not in docs: if file_name not in docs:
print(f"****kb_doc_api update_docs file_name not in docs")
try: try:
appLogger.info(f"****kb_doc_api update_docs file_name not in docs,filename:{file_name}")
kb_files.append(KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name)) kb_files.append(KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name))
# 从文件生成docs并进行向量化。
# 这里利用了KnowledgeFile的缓存功能在多线程中加载Document然后传给KnowledgeFile
for status, result in files2docs_in_thread(kb_files,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
if status:
print(f"kb_doc_api update_docs 文件生成docs并向量化filename:{file_name}")
kb_name, file_name, new_docs = result
kb_file = KnowledgeFile(filename=file_name,
knowledge_base_name=knowledge_base_name)
kb_file.splited_docs = new_docs
kb.update_doc(kb_file, not_refresh_vs_cache=True)
else:
kb_name, file_name, error = result
failed_files[file_name] = error
except Exception as e: except Exception as e:
msg = f"加载文档 {file_name} 时出错:{e}" msg = f"加载文档 {file_name} 时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}', logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None) exc_info=e if log_verbose else None)
failed_files[file_name] = msg failed_files[file_name] = msg
# 从文件生成docs并进行向量化。
# 这里利用了KnowledgeFile的缓存功能在多线程中加载Document然后传给KnowledgeFile
for status, result in files2docs_in_thread(kb_files,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
zh_title_enhance=zh_title_enhance):
if status:
kb_name, file_name, new_docs = result
kb_file = KnowledgeFile(filename=file_name,
knowledge_base_name=knowledge_base_name)
kb_file.splited_docs = new_docs
kb.update_doc(kb_file, not_refresh_vs_cache=True)
else: else:
print(f"****kb_doc_api update_docs file_name in docs") kb_name, file_name, error = result
failed_files[file_name] = error
# 将自定义的docs进行向量化 # 将自定义的docs进行向量化
for file_name, v in docs.items(): for file_name, v in docs.items():
print(f"222222 kb_doc_api update_docs file_name:{file_name},更新的doc 长度:{len(docs)}")
try: try:
print(f"kb_doc_api update_docs 自定义的docs 向量化filename:{file_name}") appLogger.info(f"222222 kb_doc_api update_docs file_name:{file_name},更新的doc 长度:{len(docs)}")
v = [x if isinstance(x, Document) else Document(**x) for x in v] v = [x if isinstance(x, Document) else Document(**x) for x in v]
kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name) kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name)
kb.update_doc(kb_file, docs=v, not_refresh_vs_cache=True) kb.update_doc(kb_file, docs=v, not_refresh_vs_cache=True)
@ -409,10 +404,8 @@ def update_docs(
if not not_refresh_vs_cache: if not not_refresh_vs_cache:
kb.save_vector_store() kb.save_vector_store()
print(f"kb_doc_api update_docs before finishing, failed_files:{failed_files}")
return BaseResponse(code=200, msg=f"更新文档完成", data={"failed_files": failed_files}) return BaseResponse(code=200, msg=f"更新文档完成", data={"failed_files": failed_files})
def download_doc( def download_doc(
knowledge_base_name: str = Query(..., description="知识库名称", examples=["samples"]), knowledge_base_name: str = Query(..., description="知识库名称", examples=["samples"]),
file_name: str = Query(..., description="文件名称", examples=["test.txt"]), file_name: str = Query(..., description="文件名称", examples=["test.txt"]),

View File

@ -28,6 +28,8 @@ from typing import List, Union, Dict, Optional, Tuple
from server.embeddings_api import embed_texts, aembed_texts, embed_documents from server.embeddings_api import embed_texts, aembed_texts, embed_documents
from server.knowledge_base.model.kb_document_model import DocumentWithVSId from server.knowledge_base.model.kb_document_model import DocumentWithVSId
from configs import logger,appLogger
import time
def normalize(embeddings: List[List[float]]) -> np.ndarray: def normalize(embeddings: List[List[float]]) -> np.ndarray:
@ -108,16 +110,22 @@ class KBService(ABC):
向知识库添加文件 向知识库添加文件
如果指定了docs则不再将文本向量化并将数据库对应条目标为custom_docs=True 如果指定了docs则不再将文本向量化并将数据库对应条目标为custom_docs=True
""" """
start_time = time.time() # 记录开始时间
if docs: if docs:
custom_docs = True custom_docs = True
for doc in docs: for doc in docs:
doc.metadata.setdefault("source", kb_file.filename) doc.metadata.setdefault("source", kb_file.filename)
print(f"kb_doc_api add_doc docs 不为空len(docs){len(docs)}") appLogger.info(f"kb_doc_api add_doc docs 不为空len(docs){len(docs)},文件名称:{kb_file.filename}")
else: else:
docs = kb_file.file2text() docs = kb_file.file2text()
custom_docs = False custom_docs = False
print(f"kb_doc_api add_doc docs 为空len(docs){len(docs)}") appLogger.info(f"kb_doc_api add_doc docs 为空len(docs){len(docs)},文件名称:{kb_file.filename}")
end_time = time.time() # 记录结束时间
execution_time = end_time - start_time # 计算执行时间
appLogger.info(f"add_doc: 加载文件或分块耗时{execution_time}")
start_time = time.time() # 记录开始时间
if docs: if docs:
# 将 metadata["source"] 改为相对路径 # 将 metadata["source"] 改为相对路径
for doc in docs: for doc in docs:
@ -130,15 +138,19 @@ class KBService(ABC):
rel_path = Path(source).relative_to(self.doc_path) rel_path = Path(source).relative_to(self.doc_path)
doc.metadata["source"] = str(rel_path.as_posix().strip("/")) doc.metadata["source"] = str(rel_path.as_posix().strip("/"))
except Exception as e: except Exception as e:
print(f"cannot convert absolute path ({source}) to relative path. error is : {e}") appLogger.info(f"cannot convert absolute path ({source}) to relative path. error is : {e}")
self.delete_doc(kb_file) self.delete_doc(kb_file)
print(f"add_doc filepath:{kb_file.filepath}将要执行do_add_doc") #appLogger.info(f"add_doc filepath:{kb_file.filepath}将要执行do_add_doc")
doc_infos = self.do_add_doc(docs, **kwargs) doc_infos = self.do_add_doc(docs, **kwargs)
print(f"add_doc filepath:{kb_file.filepath} 将要执行dd_file_to_db") #appLogger.info(f"add_doc filepath:{kb_file.filepath} 将要执行dd_file_to_db")
status = add_file_to_db(kb_file, status = add_file_to_db(kb_file,
custom_docs=custom_docs, custom_docs=custom_docs,
docs_count=len(docs), docs_count=len(docs),
doc_infos=doc_infos) doc_infos=doc_infos)
end_time = time.time() # 记录结束时间
execution_time = end_time - start_time # 计算执行时间
appLogger.info(f"add_doc: 入库耗时:{execution_time}")
else: else:
status = False status = False
return status return status
@ -214,7 +226,7 @@ class KBService(ABC):
def del_doc_by_ids_from_db(self, knowledge_base_name: str , file_name:str, ids: List[str]) -> bool: def del_doc_by_ids_from_db(self, knowledge_base_name: str , file_name:str, ids: List[str]) -> bool:
delete_docs_from_db_by_ids(ids) delete_docs_from_db_by_ids(ids)
update_file_to_db(knowledge_base_name = knowledge_base_name,file_name = file_name) update_file_to_db(knowledge_base_name = knowledge_base_name,file_name = file_name)
print(f"*******KBService del_doc_by_ids_from_db") #print(f"*******KBService del_doc_by_ids_from_db")
return True return True
@ -239,7 +251,7 @@ class KBService(ABC):
通过file_name或metadata检索Document 通过file_name或metadata检索Document
''' '''
doc_infos = list_docs_from_db(kb_name=self.kb_name, file_name=file_name, metadata=metadata) doc_infos = list_docs_from_db(kb_name=self.kb_name, file_name=file_name, metadata=metadata)
print(f"kb_doc_api list_docs_from_db: {doc_infos}") #appLogger.info(f"kb_doc_api list_docs_from_db: {doc_infos}")
docs = [] docs = []
for x in doc_infos: for x in doc_infos:
doc_info = self.get_doc_by_ids([x["id"]]) doc_info = self.get_doc_by_ids([x["id"]])
@ -257,7 +269,7 @@ class KBService(ABC):
else: else:
# 处理 doc_info 是 NoneType 或者不是列表的情况 # 处理 doc_info 是 NoneType 或者不是列表的情况
# 可以选择跳过当前循环迭代或执行其他操作 # 可以选择跳过当前循环迭代或执行其他操作
print("base.py list_docs 返回为空") #print("base.py list_docs 返回为空")
pass pass
return docs return docs

View File

@ -9,7 +9,7 @@ from server.knowledge_base.kb_service.base import KBService, SupportedVSType
from server.knowledge_base.utils import KnowledgeFile from server.knowledge_base.utils import KnowledgeFile
from server.utils import load_local_embeddings from server.utils import load_local_embeddings
from elasticsearch import Elasticsearch,BadRequestError from elasticsearch import Elasticsearch,BadRequestError
from configs import logger from configs import logger,appLogger
from configs import kbs_config from configs import kbs_config
from server.knowledge_base.model.kb_document_model import DocumentWithVSId from server.knowledge_base.model.kb_document_model import DocumentWithVSId
@ -30,13 +30,13 @@ class ESKBService(KBService):
self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}", self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}",
basic_auth=(self.user,self.password)) basic_auth=(self.user,self.password))
else: else:
logger.warning("ES未配置用户名和密码") appLogger.warning("ES未配置用户名和密码")
self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}") self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}")
except ConnectionError: except ConnectionError:
logger.error("连接到 Elasticsearch 失败!") appLogger.error("连接到 Elasticsearch 失败!")
raise ConnectionError raise ConnectionError
except Exception as e: except Exception as e:
logger.error(f"Error 发生 : {e}") appLogger.error(f"Error 发生 : {e}")
raise e raise e
try: try:
# 首先尝试通过es_client_python创建 # 首先尝试通过es_client_python创建
@ -51,8 +51,8 @@ class ESKBService(KBService):
} }
self.es_client_python.indices.create(index=self.index_name, mappings=mappings) self.es_client_python.indices.create(index=self.index_name, mappings=mappings)
except BadRequestError as e: except BadRequestError as e:
logger.error("创建索引失败,重新") appLogger.error("创建索引失败,重新")
logger.error(e) appLogger.error(e)
try: try:
# langchain ES 连接、创建索引 # langchain ES 连接、创建索引
@ -67,7 +67,7 @@ class ESKBService(KBService):
es_password=self.password es_password=self.password
) )
else: else:
logger.warning("ES未配置用户名和密码") appLogger.warning("ES未配置用户名和密码")
self.db_init = ElasticsearchStore( self.db_init = ElasticsearchStore(
es_url=f"http://{self.IP}:{self.PORT}", es_url=f"http://{self.IP}:{self.PORT}",
index_name=self.index_name, index_name=self.index_name,
@ -77,10 +77,10 @@ class ESKBService(KBService):
) )
except ConnectionError: except ConnectionError:
print("### 初始化 Elasticsearch 失败!") print("### 初始化 Elasticsearch 失败!")
logger.error("### 初始化 Elasticsearch 失败!") appLogger.error("### 初始化 Elasticsearch 失败!")
raise ConnectionError raise ConnectionError
except Exception as e: except Exception as e:
logger.error(f"Error 发生 : {e}") appLogger.error(f"Error 发生 : {e}")
raise e raise e
try: try:
# 尝试通过db_init创建索引 # 尝试通过db_init创建索引
@ -89,8 +89,8 @@ class ESKBService(KBService):
dims_length=self.dims_length dims_length=self.dims_length
) )
except Exception as e: except Exception as e:
logger.error("创建索引失败...") appLogger.error("创建索引失败...")
logger.error(e) appLogger.error(e)
# raise e # raise e
@ -156,9 +156,9 @@ class ESKBService(KBService):
except ConnectionError as ce: except ConnectionError as ce:
print(ce) print(ce)
print("连接到 Elasticsearch 失败!") print("连接到 Elasticsearch 失败!")
logger.error("连接到 Elasticsearch 失败!") appLogger.error("连接到 Elasticsearch 失败!")
except Exception as e: except Exception as e:
logger.error(f"Error 发生 : {e}") appLogger.error(f"Error 发生 : {e}")
print(e) print(e)
@ -172,7 +172,7 @@ class ESKBService(KBService):
def searchbyContent(self, query:str, top_k: int = 2): def searchbyContent(self, query:str, top_k: int = 2):
if self.es_client_python.indices.exists(index=self.index_name): if self.es_client_python.indices.exists(index=self.index_name):
print(f"******ESKBService searchByContent {self.index_name},query:{query}") appLogger.info(f"******ESKBService searchByContent {self.index_name},query:{query}")
tem_query = { tem_query = {
"query": {"match": { "query": {"match": {
"context": "*" + query + "*" "context": "*" + query + "*"
@ -199,7 +199,7 @@ class ESKBService(KBService):
def searchbyContentInternal(self, query:str, top_k: int = 2): def searchbyContentInternal(self, query:str, top_k: int = 2):
if self.es_client_python.indices.exists(index=self.index_name): if self.es_client_python.indices.exists(index=self.index_name):
print(f"******ESKBService searchbyContentInternal {self.index_name},query:{query}") appLogger.info(f"******ESKBService searchbyContentInternal {self.index_name},query:{query}")
tem_query = { tem_query = {
"query": {"match": { "query": {"match": {
"context": "*" + query + "*" "context": "*" + query + "*"
@ -231,19 +231,19 @@ class ESKBService(KBService):
metadata=result["_source"]["metadata"], metadata=result["_source"]["metadata"],
)) ))
except Exception as e: except Exception as e:
logger.error(f"ES Docs Get Error! {e}") appLogger.error(f"ES Docs Get Error! {e}")
return result_list return result_list
def del_doc_by_ids(self,ids: List[str]) -> bool: def del_doc_by_ids(self,ids: List[str]) -> bool:
print(f"es_kb_service del_doc_by_ids") appLogger.info(f"es_kb_service del_doc_by_ids")
for doc_id in ids: for doc_id in ids:
try: try:
self.es_client_python.delete(index=self.index_name, self.es_client_python.delete(index=self.index_name,
id=doc_id, id=doc_id,
refresh=True) refresh=True)
except Exception as e: except Exception as e:
logger.error(f"ES Docs Delete Error! {e}") appLogger.error(f"ES Docs Delete Error! {e}")
def do_delete_doc(self, kb_file, **kwargs): def do_delete_doc(self, kb_file, **kwargs):
@ -262,7 +262,7 @@ class ESKBService(KBService):
search_results = self.es_client_python.search(index=self.index_name, body=query,size=200) search_results = self.es_client_python.search(index=self.index_name, body=query,size=200)
delete_list = [hit["_id"] for hit in search_results['hits']['hits']] delete_list = [hit["_id"] for hit in search_results['hits']['hits']]
size = len(delete_list) size = len(delete_list)
print(f"***do_delete_doc: 删除的size:{size}, {delete_list}") #print(f"***do_delete_doc: 删除的size:{size}, {delete_list}")
if len(delete_list) == 0: if len(delete_list) == 0:
return None return None
else: else:
@ -272,7 +272,7 @@ class ESKBService(KBService):
id=doc_id, id=doc_id,
refresh=True) refresh=True)
except Exception as e: except Exception as e:
logger.error(f"ES Docs Delete Error! {e}") appLogger.error(f"ES Docs Delete Error! {e}")
# self.db_init.delete(ids=delete_list) # self.db_init.delete(ids=delete_list)
#self.es_client_python.indices.refresh(index=self.index_name) #self.es_client_python.indices.refresh(index=self.index_name)
@ -300,8 +300,8 @@ class ESKBService(KBService):
if len(search_results["hits"]["hits"]) == 0: if len(search_results["hits"]["hits"]) == 0:
raise ValueError("召回元素个数为0") raise ValueError("召回元素个数为0")
info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]] info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]]
size = len(info_docs) #size = len(info_docs)
print(f"do_add_doc 召回元素个数:{size}") #print(f"do_add_doc 召回元素个数:{size}")
return info_docs return info_docs

View File

@ -5,6 +5,7 @@ from configs import (
OVERLAP_SIZE, OVERLAP_SIZE,
ZH_TITLE_ENHANCE, ZH_TITLE_ENHANCE,
logger, logger,
appLogger,
log_verbose, log_verbose,
text_splitter_dict, text_splitter_dict,
LLM_MODELS, LLM_MODELS,
@ -94,7 +95,7 @@ def list_files_from_folder(kb_name: str):
process_entry(entry) process_entry(entry)
except Exception as e: except Exception as e:
logger.error(f"Error 发生 : {e}") appLogger.error(f"Error 发生 : {e}")
return result return result
@ -175,7 +176,7 @@ def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None):
DocumentLoader = getattr(document_loaders_module, loader_name) DocumentLoader = getattr(document_loaders_module, loader_name)
except Exception as e: except Exception as e:
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}" msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}', appLogger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None) exc_info=e if log_verbose else None)
document_loaders_module = importlib.import_module('langchain.document_loaders') document_loaders_module = importlib.import_module('langchain.document_loaders')
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader") DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
@ -314,7 +315,7 @@ class KnowledgeFile:
def file2docs(self, refresh: bool = False): def file2docs(self, refresh: bool = False):
if self.docs is None or refresh: if self.docs is None or refresh:
logger.info(f"{self.document_loader_name} used for {self.filepath}") appLogger.info(f"{self.document_loader_name} used for {self.filepath}")
loader = get_loader(loader_name=self.document_loader_name, loader = get_loader(loader_name=self.document_loader_name,
file_path=self.filepath, file_path=self.filepath,
loader_kwargs=self.loader_kwargs) loader_kwargs=self.loader_kwargs)
@ -439,7 +440,7 @@ def files2docs_in_thread(
return True, (file.kb_name, file.filename, file.file2text(**kwargs)) return True, (file.kb_name, file.filename, file.file2text(**kwargs))
except Exception as e: except Exception as e:
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}" msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}"
logger.error(f'{e.__class__.__name__}: {msg}', appLogger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None) exc_info=e if log_verbose else None)
return False, (file.kb_name, file.filename, msg) return False, (file.kb_name, file.filename, msg)

View File

@ -158,20 +158,20 @@ def zh_third_title_enhance(docs: Document) -> Document:
#print(f"zh_third_title_enhance ....") #print(f"zh_third_title_enhance ....")
if len(docs) > 0: if len(docs) > 0:
for doc in docs: for doc in docs:
print(f"zh_third_title_enhance: {doc}") #print(f"zh_third_title_enhance: {doc}")
third_title = get_third_level_title(doc.page_content) third_title = get_third_level_title(doc.page_content)
if third_title: if third_title:
title = third_title title = third_title
print(f"title: {title}") #print(f"title: {title}")
elif title: elif title:
print(f"title is not none") #print(f"title is not none")
temp_fourth_content = is_fourth_level_content(doc.page_content) temp_fourth_content = is_fourth_level_content(doc.page_content)
if temp_fourth_content: if temp_fourth_content:
#print(f"is_fourth_level_content : {temp_fourth_content}") #print(f"is_fourth_level_content : {temp_fourth_content}")
doc.page_content = f"{title} {doc.page_content}" doc.page_content = f"{title} {doc.page_content}"
else: else:
title = None title = None
print(f"final title: {title}") #print(f"final title: {title}")
return docs return docs
else: else:
print("zh_third_title_enhance 文件不存在") print("zh_third_title_enhance 文件不存在")
@ -181,16 +181,16 @@ def zh_second_title_enhance(docs: Document) -> Document:
title = None title = None
if len(docs) > 0: if len(docs) > 0:
for doc in docs: for doc in docs:
print(f"zh_second_title_enhance: {doc}") #print(f"zh_second_title_enhance: {doc}")
second_title = get_second_level_title(doc.page_content) second_title = get_second_level_title(doc.page_content)
if second_title: if second_title:
title = second_title title = second_title
print(f"title: {title}") #print(f"title: {title}")
elif title: elif title:
print(f"title is not none") #print(f"title is not none")
temp_third_content = is_third_level_content(doc.page_content) temp_third_content = is_third_level_content(doc.page_content)
if temp_third_content: if temp_third_content:
print(f"is_third_level_content : {temp_third_content}") #print(f"is_third_level_content : {temp_third_content}")
doc.page_content = f"{title} {doc.page_content}" doc.page_content = f"{title} {doc.page_content}"
else: else:
title = None title = None
@ -204,19 +204,19 @@ def zh_first_title_enhance(docs: Document) -> Document:
title = None title = None
if len(docs) > 0: if len(docs) > 0:
for doc in docs: for doc in docs:
print(f"zh_first_title_enhance: {doc}") #print(f"zh_first_title_enhance: {doc}")
first_title = get_fist_level_title(doc.page_content) first_title = get_fist_level_title(doc.page_content)
if first_title: if first_title:
title = first_title title = first_title
print(f"title: {title}") #print(f"title: {title}")
elif title: elif title:
temp_second_content = is_second_level_content(doc.page_content) temp_second_content = is_second_level_content(doc.page_content)
if temp_second_content: if temp_second_content:
print(f"is_second_level_content : {temp_second_content}") #print(f"is_second_level_content : {temp_second_content}")
doc.page_content = f"{title} {doc.page_content}" doc.page_content = f"{title} {doc.page_content}"
else: else:
title = None title = None
print(f"final title: {title}") #print(f"final title: {title}")
return docs return docs
else: else:
print("zh_first_title_enhance 文件不存在") print("zh_first_title_enhance 文件不存在")