fix typos

This commit is contained in:
imClumsyPanda 2023-12-31 20:13:14 +08:00
parent 349de9b955
commit 719e2713ed
3 changed files with 69 additions and 63 deletions

View File

@ -25,7 +25,7 @@ faiss-cpu~=1.7.4 # `conda install faiss-gpu -c conda-forge` if you want to accel
accelerate==0.24.1 accelerate==0.24.1
spacy~=3.7.2 spacy~=3.7.2
PyMuPDF~=1.23.8 PyMuPDF~=1.23.8
rapidocr_onnxruntime~=1.3.8 rapidocr_onnxruntime==1.3.8
requests>=2.31.0 requests>=2.31.0
pathlib>=1.0.1 pathlib>=1.0.1
pytest>=7.4.3 pytest>=7.4.3
@ -35,16 +35,17 @@ markdownify>=0.11.6
tiktoken~=0.5.2 tiktoken~=0.5.2
tqdm>=4.66.1 tqdm>=4.66.1
websockets>=12.0 websockets>=12.0
numpy~=1.26.2 numpy~=1.24.4
pandas~=2.1.4 pandas~=2.0.3
einops>=0.7.0 einops>=0.7.0
transformers_stream_generator==0.0.4 transformers_stream_generator==0.0.4
vllm==0.2.6; sys_platform == "linux" vllm==0.2.6; sys_platform == "linux"
httpx[brotli,http2,socks]~=0.25.2 httpx[brotli,http2,socks]==0.25.2
llama-index
# optional document loaders # optional document loaders
rapidocr_paddle[gpu]>=1.3.0.post5 # gpu accelleration for ocr of pdf and image files # rapidocr_paddle[gpu]>=1.3.0.post5 # gpu accelleration for ocr of pdf and image files
jq>=1.6.0 # for .json and .jsonl files. suggest `conda install jq` on windows jq>=1.6.0 # for .json and .jsonl files. suggest `conda install jq` on windows
# html2text # for .enex files # html2text # for .enex files
beautifulsoup4~=4.12.2 # for .mhtml files beautifulsoup4~=4.12.2 # for .mhtml files
@ -52,7 +53,7 @@ pysrt~=1.1.2
# Online api libs dependencies # Online api libs dependencies
zhipuai>=1.0.7<=2.0.0 # zhipu zhipuai>=1.0.7, <=2.0.0 # zhipu
dashscope>=1.13.6 # qwen dashscope>=1.13.6 # qwen
# volcengine>=1.0.119 # fangzhou # volcengine>=1.0.119 # fangzhou
@ -75,5 +76,4 @@ streamlit-option-menu>=0.3.6
streamlit-chatbox==1.1.11 streamlit-chatbox==1.1.11
streamlit-modal>=0.1.0 streamlit-modal>=0.1.0
streamlit-aggrid>=0.3.4.post3 streamlit-aggrid>=0.3.4.post3
httpx[brotli,http2,socks]>=0.25.2
watchdog>=3.0.0 watchdog>=3.0.0

View File

@ -1,5 +1,6 @@
import os import os
import sys import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
from typing import Any, List, Optional from typing import Any, List, Optional
from sentence_transformers import CrossEncoder from sentence_transformers import CrossEncoder
@ -9,6 +10,7 @@ from langchain.callbacks.manager import Callbacks
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
from llama_index.bridge.pydantic import Field, PrivateAttr from llama_index.bridge.pydantic import Field, PrivateAttr
class LangchainReranker(BaseDocumentCompressor): class LangchainReranker(BaseDocumentCompressor):
"""Document compressor that uses `Cohere Rerank API`.""" """Document compressor that uses `Cohere Rerank API`."""
model_name_or_path: str = Field() model_name_or_path: str = Field()
@ -19,6 +21,7 @@ class LangchainReranker(BaseDocumentCompressor):
batch_size: int = Field() batch_size: int = Field()
# show_progress_bar: bool = None # show_progress_bar: bool = None
num_workers: int = Field() num_workers: int = Field()
# activation_fct = None # activation_fct = None
# apply_softmax = False # apply_softmax = False
@ -95,6 +98,8 @@ class LangchainReranker(BaseDocumentCompressor):
doc.metadata["relevance_score"] = value doc.metadata["relevance_score"] = value
final_results.append(doc) final_results.append(doc)
return final_results return final_results
if __name__ == "__main__": if __name__ == "__main__":
from configs import (LLM_MODELS, from configs import (LLM_MODELS,
VECTOR_SEARCH_TOP_K, VECTOR_SEARCH_TOP_K,
@ -105,6 +110,7 @@ if __name__ == "__main__":
RERANKER_MAX_LENGTH, RERANKER_MAX_LENGTH,
MODEL_PATH) MODEL_PATH)
from server.utils import embedding_device from server.utils import embedding_device
if USE_RERANKER: if USE_RERANKER:
reranker_model_path = MODEL_PATH["reranker"].get(RERANKER_MODEL, "BAAI/bge-reranker-large") reranker_model_path = MODEL_PATH["reranker"].get(RERANKER_MODEL, "BAAI/bge-reranker-large")
print("-----------------model path------------------") print("-----------------model path------------------")