Add llm_model_dict to choose llm and add chatglm-6b-int4 as an option
This commit is contained in:
parent
384d705101
commit
7720bb58e0
|
|
@ -16,20 +16,8 @@ def torch_gc():
|
|||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"THUDM/chatglm-6b",
|
||||
trust_remote_code=True
|
||||
)
|
||||
model = (
|
||||
AutoModel.from_pretrained(
|
||||
"THUDM/chatglm-6b",
|
||||
trust_remote_code=True)
|
||||
.half()
|
||||
.cuda()
|
||||
)
|
||||
|
||||
|
||||
class ChatGLM(LLM):
|
||||
model_name: str
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.1
|
||||
top_p = 0.9
|
||||
|
|
@ -38,6 +26,20 @@ class ChatGLM(LLM):
|
|||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def load_model(self,
|
||||
model_name_or_path: str = "THUDM/chatglm-6b"):
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True
|
||||
)
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True)
|
||||
.half()
|
||||
.cuda()
|
||||
)
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "ChatGLM"
|
||||
|
|
@ -45,8 +47,8 @@ class ChatGLM(LLM):
|
|||
def _call(self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None) -> str:
|
||||
response, updated_history = model.chat(
|
||||
tokenizer,
|
||||
response, updated_history = self.model.chat(
|
||||
self.tokenizer,
|
||||
prompt,
|
||||
history=self.history,
|
||||
max_length=self.max_token,
|
||||
|
|
|
|||
|
|
@ -15,8 +15,14 @@ embedding_model_dict = {
|
|||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||||
"text2vec": "GanymedeNil/text2vec-large-chinese"
|
||||
}
|
||||
chatglm = ChatGLM()
|
||||
|
||||
llm_model_dict = {
|
||||
"chatglm-6b": "THUDM/chatglm-6b",
|
||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4"
|
||||
}
|
||||
|
||||
chatglm = ChatGLM()
|
||||
chatglm.load_model(model_name_or_path=llm_model_dict["chatglm-6b"])
|
||||
|
||||
def init_knowledge_vector_store(filepath):
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict["text2vec"], )
|
||||
|
|
|
|||
Loading…
Reference in New Issue