updata MyFAISS
This commit is contained in:
parent
27a9bf2433
commit
7863e0fea8
|
|
@ -4,9 +4,7 @@ from langchain.document_loaders import UnstructuredFileLoader, TextLoader, CSVLo
|
||||||
from configs.model_config import *
|
from configs.model_config import *
|
||||||
import datetime
|
import datetime
|
||||||
from textsplitter import ChineseTextSplitter
|
from textsplitter import ChineseTextSplitter
|
||||||
from typing import List, Tuple, Dict
|
from typing import List
|
||||||
from langchain.docstore.document import Document
|
|
||||||
import numpy as np
|
|
||||||
from utils import torch_gc
|
from utils import torch_gc
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from pypinyin import lazy_pinyin
|
from pypinyin import lazy_pinyin
|
||||||
|
|
|
||||||
|
|
@ -22,27 +22,6 @@ class MyFAISS(FAISS, VectorStore):
|
||||||
index_to_docstore_id=index_to_docstore_id,
|
index_to_docstore_id=index_to_docstore_id,
|
||||||
normalize_L2=normalize_L2)
|
normalize_L2=normalize_L2)
|
||||||
|
|
||||||
# def similarity_search_with_score_by_vector(
|
|
||||||
# self, embedding: List[float], k: int = 4
|
|
||||||
# ) -> List[Tuple[Document, float]]:
|
|
||||||
# faiss = dependable_faiss_import()
|
|
||||||
# vector = np.array([embedding], dtype=np.float32)
|
|
||||||
# if self._normalize_L2:
|
|
||||||
# faiss.normalize_L2(vector)
|
|
||||||
# scores, indices = self.index.search(vector, k)
|
|
||||||
# docs = []
|
|
||||||
# for j, i in enumerate(indices[0]):
|
|
||||||
# if i == -1:
|
|
||||||
# # This happens when not enough docs are returned.
|
|
||||||
# continue
|
|
||||||
# _id = self.index_to_docstore_id[i]
|
|
||||||
# doc = self.docstore.search(_id)
|
|
||||||
# if not isinstance(doc, Document):
|
|
||||||
# raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
|
||||||
#
|
|
||||||
# docs.append((doc, scores[0][j]))
|
|
||||||
# return docs
|
|
||||||
|
|
||||||
def seperate_list(self, ls: List[int]) -> List[List[int]]:
|
def seperate_list(self, ls: List[int]) -> List[List[int]]:
|
||||||
# TODO: 增加是否属于同一文档的判断
|
# TODO: 增加是否属于同一文档的判断
|
||||||
lists = []
|
lists = []
|
||||||
|
|
@ -59,7 +38,11 @@ class MyFAISS(FAISS, VectorStore):
|
||||||
def similarity_search_with_score_by_vector(
|
def similarity_search_with_score_by_vector(
|
||||||
self, embedding: List[float], k: int = 4
|
self, embedding: List[float], k: int = 4
|
||||||
) -> List[Document]:
|
) -> List[Document]:
|
||||||
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
|
faiss = dependable_faiss_import()
|
||||||
|
vector = np.array([embedding], dtype=np.float32)
|
||||||
|
if self._normalize_L2:
|
||||||
|
faiss.normalize_L2(vector)
|
||||||
|
scores, indices = self.index.search(vector, k)
|
||||||
docs = []
|
docs = []
|
||||||
id_set = set()
|
id_set = set()
|
||||||
store_len = len(self.index_to_docstore_id)
|
store_len = len(self.index_to_docstore_id)
|
||||||
|
|
@ -69,7 +52,7 @@ class MyFAISS(FAISS, VectorStore):
|
||||||
continue
|
continue
|
||||||
_id = self.index_to_docstore_id[i]
|
_id = self.index_to_docstore_id[i]
|
||||||
doc = self.docstore.search(_id)
|
doc = self.docstore.search(_id)
|
||||||
if (not self.chunk_conent) or ("add_context" in doc.metadata and not doc.metadata["add_context"]):
|
if (not self.chunk_conent) or ("context_expand" in doc.metadata and not doc.metadata["context_expand"]):
|
||||||
if not isinstance(doc, Document):
|
if not isinstance(doc, Document):
|
||||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||||
doc.metadata["score"] = int(scores[0][j])
|
doc.metadata["score"] = int(scores[0][j])
|
||||||
|
|
@ -79,11 +62,17 @@ class MyFAISS(FAISS, VectorStore):
|
||||||
docs_len = len(doc.page_content)
|
docs_len = len(doc.page_content)
|
||||||
for k in range(1, max(i, store_len - i)):
|
for k in range(1, max(i, store_len - i)):
|
||||||
break_flag = False
|
break_flag = False
|
||||||
for l in [i + k, i - k]:
|
if "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "forward":
|
||||||
if 0 <= l < len(self.index_to_docstore_id):
|
expand_range = [i + k]
|
||||||
|
elif "context_expand_method" in doc.metadata and doc.metadata["context_expand_method"] == "backward":
|
||||||
|
expand_range = [i - k]
|
||||||
|
else:
|
||||||
|
expand_range = [i + k, i - k]
|
||||||
|
for l in expand_range:
|
||||||
|
if l not in id_set and 0 <= l < len(self.index_to_docstore_id):
|
||||||
_id0 = self.index_to_docstore_id[l]
|
_id0 = self.index_to_docstore_id[l]
|
||||||
doc0 = self.docstore.search(_id0)
|
doc0 = self.docstore.search(_id0)
|
||||||
if docs_len + len(doc0.page_content) > self.chunk_size:
|
if docs_len + len(doc0.page_content) > self.chunk_size or doc0.metadata["source"] != doc.metadata["source"]:
|
||||||
break_flag = True
|
break_flag = True
|
||||||
break
|
break
|
||||||
elif doc0.metadata["source"] == doc.metadata["source"]:
|
elif doc0.metadata["source"] == doc.metadata["source"]:
|
||||||
|
|
@ -91,7 +80,7 @@ class MyFAISS(FAISS, VectorStore):
|
||||||
id_set.add(l)
|
id_set.add(l)
|
||||||
if break_flag:
|
if break_flag:
|
||||||
break
|
break
|
||||||
if (not self.chunk_conent) or ("add_context" in doc.metadata and doc.metadata["add_context"] == False):
|
if (not self.chunk_conent) or ("add_context" in doc.metadata and not doc.metadata["add_context"]):
|
||||||
return docs
|
return docs
|
||||||
if len(id_set) == 0 and self.score_threshold > 0:
|
if len(id_set) == 0 and self.score_threshold > 0:
|
||||||
return []
|
return []
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue