add bing_search_chat.py and duckduckgo_search_chat.py

This commit is contained in:
imClumsyPanda 2023-08-01 16:39:17 +08:00
parent 5ce2484af0
commit 7c01a2a253
6 changed files with 155 additions and 7 deletions

View File

@ -106,4 +106,17 @@ PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回
# API 是否开启跨域默认为False如果需要开启请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
OPEN_CROSS_DOMAIN = False
# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key
# 此外如果是在服务器上报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙需要联系管理员加白名单如果公司的服务器的话就别想了GG
BING_SUBSCRIPTION_KEY = ""

View File

@ -7,8 +7,9 @@ import argparse
import uvicorn
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import RedirectResponse, StreamingResponse
from server.chat import chat, knowledge_base_chat, openai_chat
from starlette.responses import RedirectResponse
from server.chat import (chat, knowledge_base_chat, openai_chat,
bing_search_chat, duckduckgo_search_chat)
from server.knowledge_base import (list_kbs, create_kb, delete_kb,
list_docs, upload_doc, delete_doc, update_doc)
from server.utils import BaseResponse, ListResponse
@ -50,7 +51,13 @@ def create_app():
tags=["Chat"],
summary="与知识库对话")(knowledge_base_chat)
# app.post("/chat/bing_search_chat", tags=["Chat"], summary="与Bing搜索对话")(bing_search_chat)
app.post("/chat/bing_search_chat",
tags=["Chat"],
summary="与Bing搜索对话")(bing_search_chat)
app.post("/chat/duckduckgo_search_chat",
tags=["Chat"],
summary="与DuckDuckGo搜索对话")(duckduckgo_search_chat)
app.get("/knowledge_base/list_knowledge_bases",
tags=["Knowledge Base Management"],

View File

@ -1,3 +1,5 @@
from .chat import chat
from .knowledge_base_chat import knowledge_base_chat
from .openai_chat import openai_chat
from .duckduckgo_search_chat import duckduckgo_search_chat
from .bing_search_chat import bing_search_chat

View File

@ -1,3 +0,0 @@
# TODO: 完成 bing_chat agent 接口实现
def bing_chat():
pass

View File

@ -0,0 +1,67 @@
from langchain.utilities import BingSearchAPIWrapper
from configs.model_config import BING_SEARCH_URL, BING_SUBSCRIPTION_KEY
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE)
from server.chat.utils import wrap_done
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
def bing_search(text, result_len=3):
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
"title": "env info is not found",
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
bing_search_url=BING_SEARCH_URL)
return search.results(text, result_len)
def search_result2docs(search_results):
docs = []
for result in search_results:
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
metadata={"source": result["link"] if "link" in result.keys() else "",
"filename": result["title"] if "title" in result.keys() else ""})
docs.append(doc)
return docs
def bing_search_chat(query: str = Body(..., description="用户输入", example="你好"),
):
async def bing_search_chat_iterator(query: str,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
results = bing_search(query, result_len=3)
docs = search_result2docs(results)
context = "\n".join([doc.page_content for doc in docs])
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
await task
return StreamingResponse(bing_search_chat_iterator(query), media_type="text/event-stream")

View File

@ -0,0 +1,62 @@
from langchain.utilities import DuckDuckGoSearchAPIWrapper
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE)
from server.chat.utils import wrap_done
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
def duckduckgo_search(text, result_len=3):
search = DuckDuckGoSearchAPIWrapper()
return search.results(text, result_len)
def search_result2docs(search_results):
docs = []
for result in search_results:
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
metadata={"source": result["link"] if "link" in result.keys() else "",
"filename": result["title"] if "title" in result.keys() else ""})
docs.append(doc)
return docs
def duckduckgo_search_chat(query: str = Body(..., description="用户输入", example="你好"),
):
async def duckduckgo_search_chat_iterator(query: str,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
results = duckduckgo_search(query, result_len=3)
docs = search_result2docs(results)
context = "\n".join([doc.page_content for doc in docs])
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
await task
return StreamingResponse(duckduckgo_search_chat_iterator(query), media_type="text/event-stream")