add bing_search_chat.py and duckduckgo_search_chat.py
This commit is contained in:
parent
5ce2484af0
commit
7c01a2a253
|
|
@ -106,4 +106,17 @@ PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回
|
|||
|
||||
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||||
# is open cross domain
|
||||
OPEN_CROSS_DOMAIN = False
|
||||
OPEN_CROSS_DOMAIN = False
|
||||
|
||||
# Bing 搜索必备变量
|
||||
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
|
||||
# 具体申请方式请见
|
||||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
|
||||
# 使用python创建bing api 搜索实例详见:
|
||||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
|
||||
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
|
||||
# 注意不是bing Webmaster Tools的api key,
|
||||
|
||||
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
|
||||
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
|
||||
BING_SUBSCRIPTION_KEY = ""
|
||||
|
|
@ -7,8 +7,9 @@ import argparse
|
|||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from starlette.responses import RedirectResponse, StreamingResponse
|
||||
from server.chat import chat, knowledge_base_chat, openai_chat
|
||||
from starlette.responses import RedirectResponse
|
||||
from server.chat import (chat, knowledge_base_chat, openai_chat,
|
||||
bing_search_chat, duckduckgo_search_chat)
|
||||
from server.knowledge_base import (list_kbs, create_kb, delete_kb,
|
||||
list_docs, upload_doc, delete_doc, update_doc)
|
||||
from server.utils import BaseResponse, ListResponse
|
||||
|
|
@ -50,7 +51,13 @@ def create_app():
|
|||
tags=["Chat"],
|
||||
summary="与知识库对话")(knowledge_base_chat)
|
||||
|
||||
# app.post("/chat/bing_search_chat", tags=["Chat"], summary="与Bing搜索对话")(bing_search_chat)
|
||||
app.post("/chat/bing_search_chat",
|
||||
tags=["Chat"],
|
||||
summary="与Bing搜索对话")(bing_search_chat)
|
||||
|
||||
app.post("/chat/duckduckgo_search_chat",
|
||||
tags=["Chat"],
|
||||
summary="与DuckDuckGo搜索对话")(duckduckgo_search_chat)
|
||||
|
||||
app.get("/knowledge_base/list_knowledge_bases",
|
||||
tags=["Knowledge Base Management"],
|
||||
|
|
|
|||
|
|
@ -1,3 +1,5 @@
|
|||
from .chat import chat
|
||||
from .knowledge_base_chat import knowledge_base_chat
|
||||
from .openai_chat import openai_chat
|
||||
from .duckduckgo_search_chat import duckduckgo_search_chat
|
||||
from .bing_search_chat import bing_search_chat
|
||||
|
|
|
|||
|
|
@ -1,3 +0,0 @@
|
|||
# TODO: 完成 bing_chat agent 接口实现
|
||||
def bing_chat():
|
||||
pass
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
from langchain.utilities import BingSearchAPIWrapper
|
||||
from configs.model_config import BING_SEARCH_URL, BING_SUBSCRIPTION_KEY
|
||||
from fastapi import Body
|
||||
from fastapi.responses import StreamingResponse
|
||||
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE)
|
||||
from server.chat.utils import wrap_done
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain import LLMChain
|
||||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||||
from typing import AsyncIterable
|
||||
import asyncio
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
def bing_search(text, result_len=3):
|
||||
if not (BING_SEARCH_URL and BING_SUBSCRIPTION_KEY):
|
||||
return [{"snippet": "please set BING_SUBSCRIPTION_KEY and BING_SEARCH_URL in os ENV",
|
||||
"title": "env info is not found",
|
||||
"link": "https://python.langchain.com/en/latest/modules/agents/tools/examples/bing_search.html"}]
|
||||
search = BingSearchAPIWrapper(bing_subscription_key=BING_SUBSCRIPTION_KEY,
|
||||
bing_search_url=BING_SEARCH_URL)
|
||||
return search.results(text, result_len)
|
||||
|
||||
|
||||
def search_result2docs(search_results):
|
||||
docs = []
|
||||
for result in search_results:
|
||||
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
|
||||
metadata={"source": result["link"] if "link" in result.keys() else "",
|
||||
"filename": result["title"] if "title" in result.keys() else ""})
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def bing_search_chat(query: str = Body(..., description="用户输入", example="你好"),
|
||||
):
|
||||
async def bing_search_chat_iterator(query: str,
|
||||
) -> AsyncIterable[str]:
|
||||
callback = AsyncIteratorCallbackHandler()
|
||||
model = ChatOpenAI(
|
||||
streaming=True,
|
||||
verbose=True,
|
||||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
)
|
||||
|
||||
results = bing_search(query, result_len=3)
|
||||
docs = search_result2docs(results)
|
||||
context = "\n".join([doc.page_content for doc in docs])
|
||||
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
||||
|
||||
chain = LLMChain(prompt=prompt, llm=model)
|
||||
|
||||
# Begin a task that runs in the background.
|
||||
task = asyncio.create_task(wrap_done(
|
||||
chain.acall({"context": context, "question": query}),
|
||||
callback.done),
|
||||
)
|
||||
|
||||
async for token in callback.aiter():
|
||||
# Use server-sent-events to stream the response
|
||||
yield token
|
||||
await task
|
||||
|
||||
return StreamingResponse(bing_search_chat_iterator(query), media_type="text/event-stream")
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
from langchain.utilities import DuckDuckGoSearchAPIWrapper
|
||||
from fastapi import Body
|
||||
from fastapi.responses import StreamingResponse
|
||||
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE)
|
||||
from server.chat.utils import wrap_done
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain import LLMChain
|
||||
from langchain.callbacks import AsyncIteratorCallbackHandler
|
||||
from typing import AsyncIterable
|
||||
import asyncio
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
|
||||
def duckduckgo_search(text, result_len=3):
|
||||
search = DuckDuckGoSearchAPIWrapper()
|
||||
return search.results(text, result_len)
|
||||
|
||||
|
||||
def search_result2docs(search_results):
|
||||
docs = []
|
||||
for result in search_results:
|
||||
doc = Document(page_content=result["snippet"] if "snippet" in result.keys() else "",
|
||||
metadata={"source": result["link"] if "link" in result.keys() else "",
|
||||
"filename": result["title"] if "title" in result.keys() else ""})
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def duckduckgo_search_chat(query: str = Body(..., description="用户输入", example="你好"),
|
||||
):
|
||||
async def duckduckgo_search_chat_iterator(query: str,
|
||||
) -> AsyncIterable[str]:
|
||||
callback = AsyncIteratorCallbackHandler()
|
||||
model = ChatOpenAI(
|
||||
streaming=True,
|
||||
verbose=True,
|
||||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
)
|
||||
|
||||
results = duckduckgo_search(query, result_len=3)
|
||||
docs = search_result2docs(results)
|
||||
context = "\n".join([doc.page_content for doc in docs])
|
||||
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
|
||||
|
||||
chain = LLMChain(prompt=prompt, llm=model)
|
||||
|
||||
# Begin a task that runs in the background.
|
||||
task = asyncio.create_task(wrap_done(
|
||||
chain.acall({"context": context, "question": query}),
|
||||
callback.done),
|
||||
)
|
||||
|
||||
async for token in callback.aiter():
|
||||
# Use server-sent-events to stream the response
|
||||
yield token
|
||||
await task
|
||||
|
||||
return StreamingResponse(duckduckgo_search_chat_iterator(query), media_type="text/event-stream")
|
||||
Loading…
Reference in New Issue