update textsplitter
This commit is contained in:
parent
d898c7dd6c
commit
7f25c9fa8e
|
|
@ -1 +1,2 @@
|
|||
from .chinese_text_splitter import ChineseTextSplitter
|
||||
from .ali_text_splitter import AliTextSplitter
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
from langchain.text_splitter import CharacterTextSplitter
|
||||
import re
|
||||
from typing import List
|
||||
from modelscope.pipelines import pipeline
|
||||
|
||||
p = pipeline(
|
||||
task="document-segmentation",
|
||||
model='damo/nlp_bert_document-segmentation_chinese-base',
|
||||
device="cpu")
|
||||
|
||||
class AliTextSplitter(CharacterTextSplitter):
|
||||
def __init__(self, pdf: bool = False, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.pdf = pdf
|
||||
|
||||
def split_text(self, text: str) -> List[str]:
|
||||
# use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278
|
||||
# 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
# 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id
|
||||
if self.pdf:
|
||||
text = re.sub(r"\n{3,}", r"\n", text)
|
||||
text = re.sub('\s', " ", text)
|
||||
text = re.sub("\n\n", "", text)
|
||||
result = p(documents=text)
|
||||
sent_list = [i for i in result["text"].split("\n\t") if i]
|
||||
return sent_list
|
||||
|
|
@ -9,24 +9,11 @@ class ChineseTextSplitter(CharacterTextSplitter):
|
|||
super().__init__(**kwargs)
|
||||
self.pdf = pdf
|
||||
|
||||
def split_text1(self, text: str, use_document_segmentation: bool = False) -> List[str]:
|
||||
# use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278
|
||||
# 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
|
||||
# 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id
|
||||
def split_text1(self, text: str) -> List[str]:
|
||||
if self.pdf:
|
||||
text = re.sub(r"\n{3,}", "\n", text)
|
||||
text = re.sub('\s', ' ', text)
|
||||
text = text.replace("\n\n", "")
|
||||
if use_document_segmentation:
|
||||
from modelscope.pipelines import pipeline
|
||||
p = pipeline(
|
||||
task="document-segmentation",
|
||||
model='damo/nlp_bert_document-segmentation_chinese-base',
|
||||
device="cpu")
|
||||
result = p(documents=text)
|
||||
sent_list = [i for i in result["text"].split("\n\t") if i]
|
||||
return sent_list
|
||||
else:
|
||||
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))') # del :;
|
||||
sent_list = []
|
||||
for ele in sent_sep_pattern.split(text):
|
||||
|
|
@ -36,21 +23,12 @@ class ChineseTextSplitter(CharacterTextSplitter):
|
|||
sent_list.append(ele)
|
||||
return sent_list
|
||||
|
||||
def split_text(self, text: str, use_document_segmentation: bool = False) -> List[str]:
|
||||
def split_text(self, text: str) -> List[str]:
|
||||
if self.pdf:
|
||||
text = re.sub(r"\n{3,}", r"\n", text)
|
||||
text = re.sub('\s', " ", text)
|
||||
text = re.sub("\n\n", "", text)
|
||||
if use_document_segmentation:
|
||||
from modelscope.pipelines import pipeline
|
||||
p = pipeline(
|
||||
task="document-segmentation",
|
||||
model='damo/nlp_bert_document-segmentation_chinese-base',
|
||||
device="cpu")
|
||||
result = p(documents=text)
|
||||
sent_list = [i for i in result["text"].split("\n\t") if i]
|
||||
return sent_list
|
||||
else:
|
||||
|
||||
text = re.sub(r'([;;.!?。!?\?])([^”’])', r"\1\n\2", text) # 单字符断句符
|
||||
text = re.sub(r'(\.{6})([^"’”」』])', r"\1\n\2", text) # 英文省略号
|
||||
text = re.sub(r'(\…{2})([^"’”」』])', r"\1\n\2", text) # 中文省略号
|
||||
|
|
|
|||
Loading…
Reference in New Issue