diff --git a/models/chatglm_llm.py b/models/chatglm_llm.py index c5e4738..2290579 100644 --- a/models/chatglm_llm.py +++ b/models/chatglm_llm.py @@ -11,7 +11,7 @@ DEVICE_ID = "0" if torch.cuda.is_available() else None DEVICE = f"{DEVICE_}:{DEVICE_ID}" if DEVICE_ID else DEVICE_ -def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: +def auto_configure_device_map(num_gpus: int, use_lora: bool) -> Dict[str, int]: # transformer.word_embeddings 占用1层 # transformer.final_layernorm 和 lm_head 占用1层 # transformer.layers 占用 28 层 @@ -19,14 +19,21 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: num_trans_layers = 28 per_gpu_layers = 30 / num_gpus + # bugfix: PEFT加载lora模型出现的层命名不同 + if LLM_LORA_PATH and use_lora: + layer_prefix = 'base_model.model.transformer' + else: + layer_prefix = 'transformer' + # bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError # windows下 model.device 会被设置成 transformer.word_embeddings.device # linux下 model.device 会被设置成 lm_head.device # 在调用chat或者stream_chat时,input_ids会被放到model.device上 # 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError # 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上 - device_map = {'transformer.word_embeddings': 0, - 'transformer.final_layernorm': 0, 'lm_head': 0} + device_map = {f'{layer_prefix}.word_embeddings': 0, + f'{layer_prefix}.final_layernorm': 0, 'lm_head': 0, + f'base_model.model.lm_head': 0, } used = 2 gpu_target = 0 @@ -35,7 +42,7 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: gpu_target += 1 used = 0 assert gpu_target < num_gpus - device_map[f'transformer.layers.{i}'] = gpu_target + device_map[f'{layer_prefix}.layers.{i}'] = gpu_target used += 1 return device_map