use RetrievalQA instead of ChatVectorDBChain
This commit is contained in:
parent
481aab97cb
commit
866e9950e8
12
README.md
12
README.md
|
|
@ -14,9 +14,16 @@
|
|||
|
||||
**[2023/04/07]**
|
||||
1. 解决加载 ChatGLM 模型时发生显存占用为双倍的问题 (感谢 [@suc16](https://github.com/suc16) 和 [@myml](https://github.com/myml)) ;
|
||||
2. 新增清理显存机制。
|
||||
2. 新增清理显存机制;
|
||||
3. 新增`nghuyong/ernie-3.0-nano-zh`和`nghuyong/ernie-3.0-base-zh`作为 Embedding 模型备选项,相比`GanymedeNil/text2vec-large-chinese`占用显存资源更少 (感谢 [@lastrei](https://github.com/lastrei))。
|
||||
|
||||
**[2023/04/09]**
|
||||
1. 使用`langchain`中的`RetrievalQA`替代之前选用的`ChatVectorDBChain`,替换后可以有效减少提问 2-3 次后因显存不足而停止运行的问题;
|
||||
2. 在`knowledge_based_chatglm.py`中增加`EMBEDDING_MODEL`、`VECTOR_SEARCH_TOP_K`、`LLM_MODEL`、`LLM_HISTORY_LEN`、`REPLY_WITH_SOURCE`参数值设置;
|
||||
3. 增加 GPU 显存需求更小的`chatglm-6b-int4`、`chatglm-6b-int4-qe`作为 LLM 模型备选项;
|
||||
4. 更正`README.md`中的代码错误(感谢 [@calcitem](https://github.com/calcitem))。
|
||||
|
||||
|
||||
## 使用方式
|
||||
|
||||
### 硬件需求
|
||||
|
|
@ -31,7 +38,8 @@
|
|||
- Embedding 模型硬件需求
|
||||
|
||||
本项目中默认选用的 Embedding 模型 [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main) 约占用显存 3GB,也可修改为在 CPU 中运行。
|
||||
|
||||
### 软件需求
|
||||
本项目已在 python 3.8 环境下完成测试。
|
||||
### 1. 安装 python 依赖包
|
||||
```commandline
|
||||
pip install -r requirements.txt
|
||||
|
|
|
|||
|
|
@ -16,6 +16,12 @@
|
|||
2. Add gpu memory clear function after each call of ChatGLM.
|
||||
3. Add `nghuyong/ernie-3.0-nano-zh` and `nghuyong/ernie-3.0-base-zh` as Embedding model alternatives,costing less gpu than `GanymedeNil/text2vec-large-chinese` (Thanks to [@lastrei](https://github.com/lastrei))
|
||||
|
||||
**[2023/04/09]**
|
||||
1. Using `RetrievalQA` in `langchain` to replace the previously selected `ChatVectorDBChain`, the replacement can effectively solve the problem of program stopping after 2-3 questions due to insufficient gpu memory.
|
||||
2. Add `EMBEDDING_MODEL`, `VECTOR_SEARCH_TOP_K`, `LLM_MODEL`, `LLM_HISTORY_LEN`, `REPLY_WITH_SOURCE` parameter value settings in `knowledge_based_chatglm.py`.
|
||||
3. Add `chatglm-6b-int4`, `chatglm-6b-int4-qe` with smaller GPU memory requirements as LLM model alternatives.
|
||||
4. Correct code errors in `README.md` (Thanks to [@calcitem](https://github.com/calcitem)).
|
||||
|
||||
## Usage
|
||||
|
||||
### Hardware Requirements
|
||||
|
|
@ -31,6 +37,8 @@
|
|||
|
||||
The default Embedding model in this repo is [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main), 3GB GPU Memory required when running on GPU.
|
||||
|
||||
### Software Requirements
|
||||
This repo has been tested in python 3.8 environment。
|
||||
|
||||
### 1. install python packages
|
||||
```commandline
|
||||
|
|
|
|||
Loading…
Reference in New Issue