commit
86c4147bd0
|
|
@ -5,6 +5,8 @@ from transformers import AutoTokenizer, AutoModel
|
||||||
import torch
|
import torch
|
||||||
from configs.model_config import LLM_DEVICE
|
from configs.model_config import LLM_DEVICE
|
||||||
|
|
||||||
|
from typing import Dict, Tuple, Union, Optional
|
||||||
|
|
||||||
DEVICE = LLM_DEVICE
|
DEVICE = LLM_DEVICE
|
||||||
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
||||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||||
|
|
@ -17,6 +19,36 @@ def torch_gc():
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
|
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||||||
|
# transformer.word_embeddings 占用1层
|
||||||
|
# transformer.final_layernorm 和 lm_head 占用1层
|
||||||
|
# transformer.layers 占用 28 层
|
||||||
|
# 总共30层分配到num_gpus张卡上
|
||||||
|
num_trans_layers = 28
|
||||||
|
per_gpu_layers = 30 / num_gpus
|
||||||
|
|
||||||
|
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
||||||
|
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
||||||
|
# linux下 model.device 会被设置成 lm_head.device
|
||||||
|
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
||||||
|
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
||||||
|
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
||||||
|
device_map = {'transformer.word_embeddings': 0,
|
||||||
|
'transformer.final_layernorm': 0, 'lm_head': 0}
|
||||||
|
|
||||||
|
used = 2
|
||||||
|
gpu_target = 0
|
||||||
|
for i in range(num_trans_layers):
|
||||||
|
if used >= per_gpu_layers:
|
||||||
|
gpu_target += 1
|
||||||
|
used = 0
|
||||||
|
assert gpu_target < num_gpus
|
||||||
|
device_map[f'transformer.layers.{i}'] = gpu_target
|
||||||
|
used += 1
|
||||||
|
|
||||||
|
return device_map
|
||||||
|
|
||||||
|
|
||||||
class ChatGLM(LLM):
|
class ChatGLM(LLM):
|
||||||
max_token: int = 10000
|
max_token: int = 10000
|
||||||
temperature: float = 0.01
|
temperature: float = 0.01
|
||||||
|
|
@ -51,19 +83,34 @@ class ChatGLM(LLM):
|
||||||
|
|
||||||
def load_model(self,
|
def load_model(self,
|
||||||
model_name_or_path: str = "THUDM/chatglm-6b",
|
model_name_or_path: str = "THUDM/chatglm-6b",
|
||||||
llm_device=LLM_DEVICE):
|
llm_device=LLM_DEVICE,
|
||||||
|
device_map: Optional[Dict[str, int]] = None,
|
||||||
|
**kwargs):
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||||
model_name_or_path,
|
model_name_or_path,
|
||||||
trust_remote_code=True
|
trust_remote_code=True
|
||||||
)
|
)
|
||||||
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
||||||
|
# 根据当前设备GPU数量决定是否进行多卡部署
|
||||||
|
num_gpus = torch.cuda.device_count()
|
||||||
|
if num_gpus < 2 and device_map is None:
|
||||||
self.model = (
|
self.model = (
|
||||||
AutoModel.from_pretrained(
|
AutoModel.from_pretrained(
|
||||||
model_name_or_path,
|
model_name_or_path,
|
||||||
trust_remote_code=True)
|
trust_remote_code=True,
|
||||||
|
**kwargs)
|
||||||
.half()
|
.half()
|
||||||
.cuda()
|
.cuda()
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
from accelerate import dispatch_model
|
||||||
|
|
||||||
|
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, **kwargs).half()
|
||||||
|
# 可传入device_map自定义每张卡的部署情况
|
||||||
|
if device_map is None:
|
||||||
|
device_map = auto_configure_device_map(num_gpus)
|
||||||
|
|
||||||
|
self.model = dispatch_model(model, device_map=device_map)
|
||||||
else:
|
else:
|
||||||
self.model = (
|
self.model = (
|
||||||
AutoModel.from_pretrained(
|
AutoModel.from_pretrained(
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue