优化server下知识库相关模块的结构:将知识库相关操作从knowledge_base_chat移动到knowledge_base.utils;优化kb_doc_api中embeddings加载。

This commit is contained in:
liunux4odoo 2023-08-04 10:16:30 +08:00
parent 9a18218293
commit 88682c87ff
3 changed files with 55 additions and 40 deletions

View File

@ -1,8 +1,7 @@
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
CACHED_VS_NUM, VECTOR_SEARCH_TOP_K,
embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
VECTOR_SEARCH_TOP_K)
from server.chat.utils import wrap_done
from server.utils import BaseResponse
import os
@ -13,41 +12,7 @@ from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts import PromptTemplate
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from server.knowledge_base.utils import get_vs_path
from functools import lru_cache
@lru_cache(1)
def load_embeddings(model: str, device: str):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
model_kwargs={'device': device})
return embeddings
@lru_cache(CACHED_VS_NUM)
def load_vector_store(
knowledge_base_name: str,
embedding_model: str,
embedding_device: str,
):
embeddings = load_embeddings(embedding_model, embedding_device)
vs_path = get_vs_path(knowledge_base_name)
search_index = FAISS.load_local(vs_path, embeddings)
return search_index
def lookup_vs(
query: str,
knowledge_base_name: str,
top_k: int = VECTOR_SEARCH_TOP_K,
embedding_model: str = EMBEDDING_MODEL,
embedding_device: str = EMBEDDING_DEVICE,
):
search_index = load_vector_store(knowledge_base_name, embedding_model, embedding_device)
docs = search_index.similarity_search(query, k=top_k)
return docs
from server.knowledge_base.utils import lookup_vs
def knowledge_base_chat(query: str = Body(..., description="用户输入", example="你好"),

View File

@ -8,6 +8,7 @@ from server.utils import BaseResponse, ListResponse, torch_gc
from server.knowledge_base.utils import (validate_kb_name, get_kb_path, get_doc_path,
get_vs_path, get_file_path, file2text)
from configs.model_config import embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE
from server.knowledge_base.utils import load_embeddings, refresh_vs_cache
async def list_docs(knowledge_base_name: str):
@ -55,8 +56,7 @@ async def upload_doc(file: UploadFile = File(description="上传文件"),
filepath = get_file_path(knowledge_base_name, file.filename)
docs = file2text(filepath)
loaded_files = [file]
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],
model_kwargs={'device': EMBEDDING_DEVICE})
embeddings = load_embeddings(embedding_model_dict[EMBEDDING_MODEL], EMBEDDING_DEVICE)
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
vector_store = FAISS.load_local(vs_path, embeddings)
vector_store.add_documents(docs)
@ -69,6 +69,7 @@ async def upload_doc(file: UploadFile = File(description="上传文件"),
vector_store.save_local(vs_path)
if len(loaded_files) > 0:
file_status = f"成功上传文件 {file.filename}"
refresh_vs_cache(knowledge_base_name)
return BaseResponse(code=200, msg=file_status)
else:
file_status = f"上传文件 {file.filename} 失败"
@ -95,6 +96,7 @@ async def delete_doc(knowledge_base_name: str,
# TODO: 重写从向量库中删除文件
status = "" # local_doc_qa.delete_file_from_vector_store(doc_path, get_vs_path(knowledge_base_name))
if "success" in status:
refresh_vs_cache(knowledge_base_name)
return BaseResponse(code=200, msg=f"document {doc_name} delete success")
else:
return BaseResponse(code=500, msg=f"document {doc_name} delete fail")
@ -104,9 +106,9 @@ async def delete_doc(knowledge_base_name: str,
async def update_doc():
# TODO: 替换文件
# refresh_vs_cache(knowledge_base_name)
pass
async def download_doc():
# TODO: 下载文件
pass

View File

@ -1,5 +1,13 @@
import os
from configs.model_config import KB_ROOT_PATH
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from configs.model_config import (CACHED_VS_NUM, VECTOR_SEARCH_TOP_K,
embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
from functools import lru_cache
_VECTOR_STORE_TICKS = {}
def get_kb_path(knowledge_base_name: str):
@ -36,6 +44,46 @@ def file2text(filepath):
return docs
@lru_cache(1)
def load_embeddings(model: str, device: str):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
model_kwargs={'device': device})
return embeddings
@lru_cache(CACHED_VS_NUM)
def load_vector_store(
knowledge_base_name: str,
embedding_model: str,
embedding_device: str,
tick: int, # tick will be changed by upload_doc etc. and make cache refreshed.
):
print(f"loading vector store in '{knowledge_base_name}' with '{embedding_model}' embeddings.")
embeddings = load_embeddings(embedding_model, embedding_device)
vs_path = get_vs_path(knowledge_base_name)
search_index = FAISS.load_local(vs_path, embeddings)
return search_index
def lookup_vs(
query: str,
knowledge_base_name: str,
top_k: int = VECTOR_SEARCH_TOP_K,
embedding_model: str = EMBEDDING_MODEL,
embedding_device: str = EMBEDDING_DEVICE,
):
search_index = load_vector_store(knowledge_base_name, embedding_model, embedding_device)
docs = search_index.similarity_search(query, k=top_k)
return docs
def refresh_vs_cache(kb_name: str):
'''
make vector store cache refreshed when next loading
'''
_VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1
if __name__ == "__main__":
filepath = "/Users/liuqian/PycharmProjects/chatchat/knowledge_base/123/content/test.txt"
docs = file2text(filepath)