update webui.py and local_doc_qa.py
This commit is contained in:
parent
daafe8d5fa
commit
88ab9a1d21
|
|
@ -1,9 +1,8 @@
|
|||
from langchain.chains import RetrievalQA
|
||||
from langchain.prompts import PromptTemplate
|
||||
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from chains.lib.embeddings import MyEmbeddings
|
||||
# from langchain.vectorstores import FAISS
|
||||
from chains.lib.vectorstores import FAISSVS
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.vectorstores.base import VectorStoreRetriever
|
||||
from langchain.document_loaders import UnstructuredFileLoader
|
||||
from models.chatglm_llm import ChatGLM
|
||||
import sentence_transformers
|
||||
|
|
@ -12,6 +11,7 @@ from configs.model_config import *
|
|||
import datetime
|
||||
from typing import List
|
||||
from textsplitter import ChineseTextSplitter
|
||||
from langchain.docstore.document import Document
|
||||
|
||||
# return top-k text chunk from vector store
|
||||
VECTOR_SEARCH_TOP_K = 6
|
||||
|
|
@ -21,7 +21,10 @@ LLM_HISTORY_LEN = 3
|
|||
|
||||
|
||||
def load_file(filepath):
|
||||
if filepath.lower().endswith(".pdf"):
|
||||
if filepath.lower().endswith(".md"):
|
||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||
docs = loader.load()
|
||||
elif filepath.lower().endswith(".pdf"):
|
||||
loader = UnstructuredFileLoader(filepath)
|
||||
textsplitter = ChineseTextSplitter(pdf=True)
|
||||
docs = loader.load_and_split(textsplitter)
|
||||
|
|
@ -32,6 +35,22 @@ def load_file(filepath):
|
|||
return docs
|
||||
|
||||
|
||||
def get_relevant_documents(self, query: str) -> List[Document]:
|
||||
if self.search_type == "similarity":
|
||||
docs = self.vectorstore._similarity_search_with_relevance_scores(query, **self.search_kwargs)
|
||||
for doc in docs:
|
||||
doc[0].metadata["score"] = doc[1]
|
||||
docs = [doc[0] for doc in docs]
|
||||
elif self.search_type == "mmr":
|
||||
docs = self.vectorstore.max_marginal_relevance_search(
|
||||
query, **self.search_kwargs
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"search_type of {self.search_type} not allowed.")
|
||||
return docs
|
||||
|
||||
|
||||
|
||||
class LocalDocQA:
|
||||
llm: object = None
|
||||
embeddings: object = None
|
||||
|
|
@ -52,7 +71,7 @@ class LocalDocQA:
|
|||
use_ptuning_v2=use_ptuning_v2)
|
||||
self.llm.history_len = llm_history_len
|
||||
|
||||
self.embeddings = MyEmbeddings(model_name=embedding_model_dict[embedding_model],
|
||||
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[embedding_model],
|
||||
model_kwargs={'device': embedding_device})
|
||||
# self.embeddings.client = sentence_transformers.SentenceTransformer(self.embeddings.model_name,
|
||||
# device=embedding_device)
|
||||
|
|
@ -99,12 +118,12 @@ class LocalDocQA:
|
|||
print(f"{file} 未能成功加载")
|
||||
if len(docs) > 0:
|
||||
if vs_path and os.path.isdir(vs_path):
|
||||
vector_store = FAISSVS.load_local(vs_path, self.embeddings)
|
||||
vector_store = FAISS.load_local(vs_path, self.embeddings)
|
||||
vector_store.add_documents(docs)
|
||||
else:
|
||||
if not vs_path:
|
||||
vs_path = f"""{VS_ROOT_PATH}{os.path.splitext(file)[0]}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}"""
|
||||
vector_store = FAISSVS.from_documents(docs, self.embeddings)
|
||||
vector_store = FAISS.from_documents(docs, self.embeddings)
|
||||
|
||||
vector_store.save_local(vs_path)
|
||||
return vs_path, loaded_files
|
||||
|
|
@ -129,10 +148,13 @@ class LocalDocQA:
|
|||
input_variables=["context", "question"]
|
||||
)
|
||||
self.llm.history = chat_history
|
||||
vector_store = FAISSVS.load_local(vs_path, self.embeddings)
|
||||
vector_store = FAISS.load_local(vs_path, self.embeddings)
|
||||
vs_r = vector_store.as_retriever(search_type="mmr",
|
||||
search_kwargs={"k": self.top_k})
|
||||
# VectorStoreRetriever.get_relevant_documents = get_relevant_documents
|
||||
knowledge_chain = RetrievalQA.from_llm(
|
||||
llm=self.llm,
|
||||
retriever=vector_store.as_retriever(search_kwargs={"k": self.top_k}),
|
||||
retriever=vs_r,
|
||||
prompt=prompt
|
||||
)
|
||||
knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate(
|
||||
|
|
@ -140,7 +162,6 @@ class LocalDocQA:
|
|||
)
|
||||
|
||||
knowledge_chain.return_source_documents = True
|
||||
|
||||
result = knowledge_chain({"query": query})
|
||||
self.llm.history[-1][0] = query
|
||||
return result, self.llm.history
|
||||
|
|
|
|||
|
|
@ -72,13 +72,13 @@ class ChatGLM(LLM):
|
|||
stream=True) -> str:
|
||||
if stream:
|
||||
self.history = self.history + [[None, ""]]
|
||||
response, _ = self.model.stream_chat(
|
||||
for response, history in self.model.stream_chat(
|
||||
self.tokenizer,
|
||||
prompt,
|
||||
history=self.history[-self.history_len:] if self.history_len > 0 else [],
|
||||
max_length=self.max_token,
|
||||
temperature=self.temperature,
|
||||
)
|
||||
):
|
||||
torch_gc()
|
||||
self.history[-1][-1] = response
|
||||
yield response
|
||||
|
|
|
|||
35
webui.py
35
webui.py
|
|
@ -30,19 +30,28 @@ local_doc_qa = LocalDocQA()
|
|||
|
||||
|
||||
def get_answer(query, vs_path, history, mode):
|
||||
if vs_path and mode == "知识库问答":
|
||||
resp, history = local_doc_qa.get_knowledge_based_answer(
|
||||
query=query, vs_path=vs_path, chat_history=history)
|
||||
source = "".join([f"""<details> <summary>出处 {i + 1}</summary>
|
||||
{doc.page_content}
|
||||
|
||||
<b>所属文件:</b>{doc.metadata["source"]}
|
||||
</details>""" for i, doc in enumerate(resp["source_documents"])])
|
||||
history[-1][-1] += source
|
||||
if mode == "知识库问答":
|
||||
if vs_path:
|
||||
for resp, history in local_doc_qa.get_knowledge_based_answer(
|
||||
query=query, vs_path=vs_path, chat_history=history):
|
||||
# source = "".join([f"""<details> <summary>出处 {i + 1}</summary>
|
||||
# {doc.page_content}
|
||||
#
|
||||
# <b>所属文件:</b>{doc.metadata["source"]}
|
||||
# </details>""" for i, doc in enumerate(resp["source_documents"])])
|
||||
# history[-1][-1] += source
|
||||
yield history, ""
|
||||
else:
|
||||
resp = local_doc_qa.llm._call(query)
|
||||
history = history + [[query, resp + ("\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "")]]
|
||||
return history, ""
|
||||
history = history + [[query, ""]]
|
||||
for resp in local_doc_qa.llm._call(query):
|
||||
history[-1][-1] = resp + (
|
||||
"\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "")
|
||||
yield history, ""
|
||||
else:
|
||||
history = history + [[query, ""]]
|
||||
for resp in local_doc_qa.llm._call(query):
|
||||
history[-1][-1] = resp
|
||||
yield history, ""
|
||||
|
||||
|
||||
def update_status(history, status):
|
||||
|
|
@ -62,7 +71,7 @@ def init_model():
|
|||
print(e)
|
||||
reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮"""
|
||||
if str(e) == "Unknown platform: darwin":
|
||||
print("改报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
|
||||
print("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:"
|
||||
" https://github.com/imClumsyPanda/langchain-ChatGLM")
|
||||
else:
|
||||
print(reply)
|
||||
|
|
|
|||
Loading…
Reference in New Issue