diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md
index 0b7afbd..14bd260 100644
--- a/.github/ISSUE_TEMPLATE/bug_report.md
+++ b/.github/ISSUE_TEMPLATE/bug_report.md
@@ -23,10 +23,11 @@ assignees: ''
描述实际发生的结果 / Describe the actual result.
**环境信息 / Environment Information**
-- langchain-ChatGLM 版本/commit 号:(例如:v1.0.0 或 commit 123456) / langchain-ChatGLM version/commit number: (e.g., v1.0.0 or commit 123456)
+- langchain-ChatGLM 版本/commit 号:(例如:v2.0.1 或 commit 123456) / langchain-ChatGLM version/commit number: (e.g., v2.0.1 or commit 123456)
- 是否使用 Docker 部署(是/否):是 / Is Docker deployment used (yes/no): yes
-- 使用的模型(ChatGLM-6B / ClueAI/ChatYuan-large-v2 等):ChatGLM-6B / Model used (ChatGLM-6B / ClueAI/ChatYuan-large-v2, etc.): ChatGLM-6B
-- 使用的 Embedding 模型(GanymedeNil/text2vec-large-chinese 等):GanymedeNil/text2vec-large-chinese / Embedding model used (GanymedeNil/text2vec-large-chinese, etc.): GanymedeNil/text2vec-large-chinese
+- 使用的模型(ChatGLM2-6B / Qwen-7B 等):ChatGLM-6B / Model used (ChatGLM2-6B / Qwen-7B, etc.): ChatGLM2-6B
+- 使用的 Embedding 模型(moka-ai/m3e-base 等):moka-ai/m3e-base / Embedding model used (moka-ai/m3e-base, etc.): moka-ai/m3e-base
+- 使用的向量库类型 (faiss / milvus / pg_vector 等): faiss / Vector library used (faiss, milvus, pg_vector, etc.): faiss
- 操作系统及版本 / Operating system and version:
- Python 版本 / Python version:
- 其他相关环境信息 / Other relevant environment information:
diff --git a/.gitignore b/.gitignore
index af50500..b5918ee 100644
--- a/.gitignore
+++ b/.gitignore
@@ -4,4 +4,4 @@ logs
.idea/
__pycache__/
knowledge_base/
-configs/model_config.py
\ No newline at end of file
+configs/*.py
diff --git a/README.md b/README.md
index 9766035..bf3a5ae 100644
--- a/README.md
+++ b/README.md
@@ -126,6 +126,7 @@ docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/ch
- [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh)
- [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh)
- [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh)
+- [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct)
- [text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence)
- [text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase)
- [text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual)
@@ -133,6 +134,7 @@ docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/ch
- [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese)
- [nghuyong/ernie-3.0-nano-zh](https://huggingface.co/nghuyong/ernie-3.0-nano-zh)
- [nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh)
+- [OpenAI/text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings)
---
@@ -181,9 +183,11 @@ $ git clone https://huggingface.co/moka-ai/m3e-base
### 3. 设置配置项
-复制文件 [configs/model_config.py.example](configs/model_config.py.example) 存储至项目路径下 `./configs` 路径下,并重命名为 `model_config.py`。
+复制模型相关参数配置模板文件 [configs/model_config.py.example](configs/model_config.py.example) 存储至项目路径下 `./configs` 路径下,并重命名为 `model_config.py`。
-在开始执行 Web UI 或命令行交互前,请先检查 `configs/model_config.py` 中的各项模型参数设计是否符合需求:
+复制服务相关参数配置模板文件 [configs/server_config.py.example](configs/server_config.py.example) 存储至项目路径下 `./configs` 路径下,并重命名为 `server_config.py`。
+
+在开始执行 Web UI 或命令行交互前,请先检查 `configs/model_config.py` 和 `configs/server_config.py` 中的各项模型参数设计是否符合需求:
- 请确认已下载至本地的 LLM 模型本地存储路径写在 `llm_model_dict` 对应模型的 `local_model_path` 属性中,如:
@@ -204,18 +208,18 @@ embedding_model_dict = {
"m3e-base": "/Users/xxx/Downloads/m3e-base",
}
```
+如果你选择使用OpenAI的Embedding模型,请将模型的```key```写入`embedding_model_dict`中。使用该模型,你需要鞥能够访问OpenAI官的API,或设置代理。
### 4. 知识库初始化与迁移
当前项目的知识库信息存储在数据库中,在正式运行项目之前请先初始化数据库(我们强烈建议您在执行操作前备份您的知识文件)。
-- 如果您是从 `0.1.x` 版本升级过来的用户,针对已建立的知识库,请确认知识库的向量库类型、Embedding 模型 `configs/model_config.py` 中默认设置一致,如无变化只需以下命令将现有知识库信息添加到数据库即可:
+- 如果您是从 `0.1.x` 版本升级过来的用户,针对已建立的知识库,请确认知识库的向量库类型、Embedding 模型与 `configs/model_config.py` 中默认设置一致,如无变化只需以下命令将现有知识库信息添加到数据库即可:
```shell
$ python init_database.py
```
-
-- 如果您是第一次运行本项目,知识库尚未建立,或者配置文件中的知识库类型、嵌入模型发生变化,需要以下命令初始化或重建知识库:
+- 如果您是第一次运行本项目,知识库尚未建立,或者配置文件中的知识库类型、嵌入模型发生变化,或者之前的向量库没有开启`normalize_L2`,需要以下命令初始化或重建知识库:
```shell
$ python init_database.py --recreate-vs
@@ -228,7 +232,7 @@ embedding_model_dict = {
如需使用开源模型进行本地部署,需首先启动 LLM 服务,启动方式分为三种:
- [基于多进程脚本 llm_api.py 启动 LLM 服务](README.md#5.1.1-基于多进程脚本-llm_api.py-启动-LLM-服务)
-- [基于命令行脚本 llm_api_launch.py 启动 LLM 服务](README.md#5.1.2-基于命令行脚本-llm_api_launch.py-启动-LLM-服务)
+- [基于命令行脚本 llm_api_stale.py 启动 LLM 服务](README.md#5.1.2-基于命令行脚本-llm_api_stale.py-启动-LLM-服务)
- [PEFT 加载](README.md#5.1.3-PEFT-加载)
三种方式只需选择一个即可,具体操作方式详见 5.1.1 - 5.1.3。
@@ -244,6 +248,7 @@ $ python server/llm_api.py
```
项目支持多卡加载,需在 llm_api.py 中修改 create_model_worker_app 函数中,修改如下三个参数:
+
```python
gpus=None,
num_gpus=1,
@@ -256,34 +261,36 @@ max_gpu_memory="20GiB"
`max_gpu_memory` 控制每个卡使用的显存容量。
-##### 5.1.2 基于命令行脚本 llm_api_launch.py 启动 LLM 服务
+##### 5.1.2 基于命令行脚本 llm_api_stale.py 启动 LLM 服务
-⚠️ **注意:**
+⚠️ **注意:**
-**1.llm_api_launch.py脚本原生仅适用于linux,mac设备需要安装对应的linux命令,win平台请使用wls;**
+**1.llm_api_stale.py脚本原生仅适用于linux,mac设备需要安装对应的linux命令,win平台请使用wls;**
**2.加载非默认模型需要用命令行参数--model-path-address指定模型,不会读取model_config.py配置;**
-在项目根目录下,执行 [server/llm_api_launch.py](server/llm_api.py) 脚本启动 **LLM 模型**服务:
+在项目根目录下,执行 [server/llm_api_stale.py](server/llm_api_stale.py) 脚本启动 **LLM 模型**服务:
```shell
-$ python server/llm_api_launch.py
+$ python server/llm_api_stale.py
```
该方式支持启动多个worker,示例启动方式:
```shell
-$ python server/llm_api_launch.py --model-path-addresss model1@host1@port1 model2@host2@port2
+$ python server/llm_api_stale.py --model-path-address model1@host1@port1 model2@host2@port2
```
+
如果出现server端口占用情况,需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:
```shell
-$ python server/llm_api_launch.py --server-port 8887
+$ python server/llm_api_stale.py --server-port 8887
```
+
如果要启动多卡加载,示例命令如下:
```shell
-$ python server/llm_api_launch.py --gpus 0,1 --num-gpus 2 --max-gpu-memory 10GiB
+$ python server/llm_api_stale.py --gpus 0,1 --num-gpus 2 --max-gpu-memory 10GiB
```
注:以如上方式启动LLM服务会以nohup命令在后台运行 FastChat 服务,如需停止服务,可以运行如下命令:
@@ -294,24 +301,13 @@ $ python server/llm_api_shutdown.py --serve all
亦可单独停止一个 FastChat 服务模块,可选 [`all`, `controller`, `model_worker`, `openai_api_server`]
-##### 5.1.3 PEFT 加载
+##### 5.1.3 PEFT 加载(包括lora,p-tuning,prefix tuning, prompt tuning,ia等)
本项目基于 FastChat 加载 LLM 服务,故需以 FastChat 加载 PEFT 路径,即保证路径名称里必须有 peft 这个词,配置文件的名字为 adapter_config.json,peft 路径下包含 model.bin 格式的 PEFT 权重。
+详细步骤参考[加载lora微调后模型失效](https://github.com/chatchat-space/Langchain-Chatchat/issues/1130#issuecomment-1685291822)
-示例代码如下:
+
-```shell
-PEFT_SHARE_BASE_WEIGHTS=true python3 -m fastchat.serve.multi_model_worker \
- --model-path /data/chris/peft-llama-dummy-1 \
- --model-names peft-dummy-1 \
- --model-path /data/chris/peft-llama-dummy-2 \
- --model-names peft-dummy-2 \
- --model-path /data/chris/peft-llama-dummy-3 \
- --model-names peft-dummy-3 \
- --num-gpus 2
-```
-
-详见 [FastChat 相关 PR](https://github.com/lm-sys/fastchat/pull/1905#issuecomment-1627801216)
#### 5.2 启动 API 服务
@@ -354,7 +350,6 @@ $ streamlit run webui.py --server.port 666
- Web UI 对话界面:

-
- Web UI 知识库管理页面:

@@ -363,86 +358,40 @@ $ streamlit run webui.py --server.port 666
### 6. 一键启动
-⚠️ **注意:**
-
-**1. 一键启动脚本仅原生适用于Linux,Mac 设备需要安装对应的linux命令, Winodws 平台请使用 WLS;**
-
-**2. 加载非默认模型需要用命令行参数 `--model-path-address` 指定模型,不会读取 `model_config.py` 配置。**
-
-#### 6.1 API 服务一键启动脚本
-
-新增 API 一键启动脚本,可一键开启 FastChat 后台服务及本项目提供的 API 服务,调用示例:
-
-调用默认模型:
+更新一键启动脚本 startup.py,一键启动所有 Fastchat 服务、API 服务、WebUI 服务,示例代码:
```shell
-$ python server/api_allinone.py
+$ python startup.py -a
```
-加载多个非默认模型:
+并可使用 `Ctrl + C` 直接关闭所有运行服务。如果一次结束不了,可以多按几次。
+
+可选参数包括 `-a (或--all-webui)`, `--all-api`, `--llm-api`, `-c (或--controller)`, `--openai-api`,
+`-m (或--model-worker)`, `--api`, `--webui`,其中:
+
+- `--all-webui` 为一键启动 WebUI 所有依赖服务;
+
+- `--all-api` 为一键启动 API 所有依赖服务;
+
+- `--llm-api` 为一键启动 Fastchat 所有依赖的 LLM 服务;
+
+- `--openai-api` 为仅启动 FastChat 的 controller 和 openai-api-server 服务;
+
+- 其他为单独服务启动选项。
+
+若想指定非默认模型,需要用 `--model-name` 选项,示例:
```shell
-$ python server/api_allinone.py --model-path-address model1@host1@port1 model2@host2@port2
+$ python startup.py --all-webui --model-name Qwen-7B-Chat
```
-如果出现server端口占用情况,需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:
+更多信息可通过`python startup.py -h`查看。
-```shell
-$ python server/api_allinone.py --server-port 8887
-```
+**注意:**
-多卡启动:
+**1. startup 脚本用多进程方式启动各模块的服务,可能会导致打印顺序问题,请等待全部服务发起后再调用,并根据默认或指定端口调用服务(默认 LLM API 服务端口:`127.0.0.1:8888`,默认 API 服务端口:`127.0.0.1:7861`,默认 WebUI 服务端口:`本机IP:8501`)**
-```shell
-python server/api_allinone.py --model-path-address model@host@port --num-gpus 2 --gpus 0,1 --max-gpu-memory 10GiB
-```
-
-其他参数详见各脚本及 FastChat 服务说明。
-
-#### 6.2 webui一键启动脚本
-
-加载本地模型:
-
-```shell
-$ python webui_allinone.py
-```
-
-调用远程 API 服务:
-
-```shell
-$ python webui_allinone.py --use-remote-api
-```
-如果出现server端口占用情况,需手动指定server端口,并同步修改model_config.py下对应模型的base_api_url为指定端口:
-
-```shell
-$ python webui_allinone.py --server-port 8887
-```
-
-后台运行webui服务:
-
-```shell
-$ python webui_allinone.py --nohup
-```
-
-加载多个非默认模型:
-
-```shell
-$ python webui_allinone.py --model-path-address model1@host1@port1 model2@host2@port2
-```
-
-多卡启动:
-
-```shell
-$ python webui_alline.py --model-path-address model@host@port --num-gpus 2 --gpus 0,1 --max-gpu-memory 10GiB
-```
-
-其他参数详见各脚本及 Fastchat 服务说明。
-
-上述两个一键启动脚本会后台运行多个服务,如要停止所有服务,可使用 `shutdown_all.sh` 脚本:
-
-```shell
-bash shutdown_all.sh
-```
+**2.服务启动时间示设备不同而不同,约 3-10 分钟,如长时间没有启动请前往 `./logs`目录下监控日志,定位问题。**
## 常见问题
@@ -486,6 +435,6 @@ bash shutdown_all.sh
## 项目交流群
-
+
🎉 langchain-ChatGLM 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
diff --git a/common/__init__.py b/common/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/configs/__init__.py b/configs/__init__.py
index 0bed9b6..dc9dd40 100644
--- a/configs/__init__.py
+++ b/configs/__init__.py
@@ -1 +1,4 @@
-from .model_config import *
\ No newline at end of file
+from .model_config import *
+from .server_config import *
+
+VERSION = "v0.2.2-preview"
diff --git a/configs/model_config.py.example b/configs/model_config.py.example
index 8771cfc..5b2574e 100644
--- a/configs/model_config.py.example
+++ b/configs/model_config.py.example
@@ -1,14 +1,11 @@
import os
import logging
import torch
-import argparse
-import json
# 日志格式
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
-import json
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
@@ -27,7 +24,9 @@ embedding_model_dict = {
"m3e-large": "moka-ai/m3e-large",
"bge-small-zh": "BAAI/bge-small-zh",
"bge-base-zh": "BAAI/bge-base-zh",
- "bge-large-zh": "BAAI/bge-large-zh"
+ "bge-large-zh": "BAAI/bge-large-zh",
+ "bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
+ "text-embedding-ada-002": os.environ.get("OPENAI_API_KEY")
}
# 选用的 Embedding 名称
@@ -44,27 +43,15 @@ llm_model_dict = {
"api_key": "EMPTY"
},
- "chatglm-6b-int4": {
- "local_model_path": "THUDM/chatglm-6b-int4",
- "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
- "api_key": "EMPTY"
- },
-
"chatglm2-6b": {
"local_model_path": "THUDM/chatglm2-6b",
- "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
+ "api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
"api_key": "EMPTY"
},
"chatglm2-6b-32k": {
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
- "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
- "api_key": "EMPTY"
- },
-
- "vicuna-13b-hf": {
- "local_model_path": "",
- "api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
+ "api_base_url": "http://localhost:8888/v1", # "URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
"api_key": "EMPTY"
},
@@ -78,10 +65,15 @@ llm_model_dict = {
# urllib3.exceptions.NewConnectionError: :
# Failed to establish a new connection: [WinError 10060]
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
+
+ # 如果出现WARNING: Retrying langchain.chat_models.openai.acompletion_with_retry.._completion_with_retry in
+ # 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI.
+ # 需要添加代理访问(正常开的代理软件可能会拦截不上)需要设置配置openai_proxy 或者 使用环境遍历OPENAI_PROXY 进行设置
"gpt-3.5-turbo": {
"local_model_path": "gpt-3.5-turbo",
"api_base_url": "https://api.openai.com/v1",
- "api_key": os.environ.get("OPENAI_API_KEY")
+ "api_key": os.environ.get("OPENAI_API_KEY"),
+ "openai_proxy": os.environ.get("OPENAI_PROXY")
},
}
@@ -117,7 +109,7 @@ kbs_config = {
"secure": False,
},
"pg": {
- "connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatglm",
+ "connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat",
}
}
@@ -145,12 +137,12 @@ SEARCH_ENGINE_TOP_K = 5
# nltk 模型存储路径
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
-# 基于本地知识问答的提示词模版
-PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。
+# 基于本地知识问答的提示词模版(使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号
+PROMPT_TEMPLATE = """<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。 指令>
-【已知信息】{context}
+<已知信息>{{ context }}已知信息>
-【问题】{question}"""
+<问题>{{ question }}问题>"""
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
# is open cross domain
diff --git a/configs/server_config.py.example b/configs/server_config.py.example
new file mode 100644
index 0000000..5f37779
--- /dev/null
+++ b/configs/server_config.py.example
@@ -0,0 +1,100 @@
+from .model_config import LLM_MODEL, LLM_DEVICE
+
+# API 是否开启跨域,默认为False,如果需要开启,请设置为True
+# is open cross domain
+OPEN_CROSS_DOMAIN = False
+
+# 各服务器默认绑定host
+DEFAULT_BIND_HOST = "127.0.0.1"
+
+# webui.py server
+WEBUI_SERVER = {
+ "host": DEFAULT_BIND_HOST,
+ "port": 8501,
+}
+
+# api.py server
+API_SERVER = {
+ "host": DEFAULT_BIND_HOST,
+ "port": 7861,
+}
+
+# fastchat openai_api server
+FSCHAT_OPENAI_API = {
+ "host": DEFAULT_BIND_HOST,
+ "port": 8888, # model_config.llm_model_dict中模型配置的api_base_url需要与这里一致。
+}
+
+# fastchat model_worker server
+# 这些模型必须是在model_config.llm_model_dict中正确配置的。
+# 在启动startup.py时,可用通过`--model-worker --model-name xxxx`指定模型,不指定则为LLM_MODEL
+FSCHAT_MODEL_WORKERS = {
+ LLM_MODEL: {
+ "host": DEFAULT_BIND_HOST,
+ "port": 20002,
+ "device": LLM_DEVICE,
+ # todo: 多卡加载需要配置的参数
+ "gpus": None,
+ "numgpus": 1,
+ # 以下为非常用参数,可根据需要配置
+ # "max_gpu_memory": "20GiB",
+ # "load_8bit": False,
+ # "cpu_offloading": None,
+ # "gptq_ckpt": None,
+ # "gptq_wbits": 16,
+ # "gptq_groupsize": -1,
+ # "gptq_act_order": False,
+ # "awq_ckpt": None,
+ # "awq_wbits": 16,
+ # "awq_groupsize": -1,
+ # "model_names": [LLM_MODEL],
+ # "conv_template": None,
+ # "limit_worker_concurrency": 5,
+ # "stream_interval": 2,
+ # "no_register": False,
+ },
+}
+
+# fastchat multi model worker server
+FSCHAT_MULTI_MODEL_WORKERS = {
+ # todo
+}
+
+# fastchat controller server
+FSCHAT_CONTROLLER = {
+ "host": DEFAULT_BIND_HOST,
+ "port": 20001,
+ "dispatch_method": "shortest_queue",
+}
+
+
+# 以下不要更改
+def fschat_controller_address() -> str:
+ host = FSCHAT_CONTROLLER["host"]
+ port = FSCHAT_CONTROLLER["port"]
+ return f"http://{host}:{port}"
+
+
+def fschat_model_worker_address(model_name: str = LLM_MODEL) -> str:
+ if model := FSCHAT_MODEL_WORKERS.get(model_name):
+ host = model["host"]
+ port = model["port"]
+ return f"http://{host}:{port}"
+
+
+def fschat_openai_api_address() -> str:
+ host = FSCHAT_OPENAI_API["host"]
+ port = FSCHAT_OPENAI_API["port"]
+ return f"http://{host}:{port}"
+
+
+def api_address() -> str:
+ host = API_SERVER["host"]
+ port = API_SERVER["port"]
+ return f"http://{host}:{port}"
+
+
+def webui_address() -> str:
+ host = WEBUI_SERVER["host"]
+ port = WEBUI_SERVER["port"]
+ return f"http://{host}:{port}"
diff --git a/docs/FAQ.md b/docs/FAQ.md
index 62fe080..490eb25 100644
--- a/docs/FAQ.md
+++ b/docs/FAQ.md
@@ -170,3 +170,16 @@ A13: 疑为 chatglm 的 quantization 的问题或 torch 版本差异问题,针
Q14: 修改配置中路径后,加载 text2vec-large-chinese 依然提示 `WARNING: No sentence-transformers model found with name text2vec-large-chinese. Creating a new one with MEAN pooling.`
A14: 尝试更换 embedding,如 text2vec-base-chinese,请在 [configs/model_config.py](../configs/model_config.py) 文件中,修改 `text2vec-base`参数为本地路径,绝对路径或者相对路径均可
+
+
+---
+
+Q15: 使用pg向量库建表报错
+
+A15: 需要手动安装对应的vector扩展(连接pg执行 CREATE EXTENSION IF NOT EXISTS vector)
+
+---
+
+Q16: pymilvus 连接超时
+
+A16.pymilvus版本需要匹配和milvus对应否则会超时参考pymilvus==2.1.3
\ No newline at end of file
diff --git a/docs/docker/vector_db/pg/docker-compose.yml b/docs/docker/vector_db/pg/docker-compose.yml
index 8e8359c..b14296b 100644
--- a/docs/docker/vector_db/pg/docker-compose.yml
+++ b/docs/docker/vector_db/pg/docker-compose.yml
@@ -2,9 +2,9 @@ version: "3.8"
services:
postgresql:
image: ankane/pgvector:v0.4.1
- container_name: langchain-chatgml-pg-db
+ container_name: langchain_chatchat-pg-db
environment:
- POSTGRES_DB: langchain_chatgml
+ POSTGRES_DB: langchain_chatchat
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
diff --git a/docs/向量库环境docker.md b/docs/向量库环境docker.md
index 162b0f0..dd5e2cb 100644
--- a/docs/向量库环境docker.md
+++ b/docs/向量库环境docker.md
@@ -5,3 +5,4 @@
cd docs/docker/vector_db/milvus
docker-compose up -d
```
+
diff --git a/img/qr_code_53.jpg b/img/qr_code_53.jpg
new file mode 100644
index 0000000..3174ccc
Binary files /dev/null and b/img/qr_code_53.jpg differ
diff --git a/img/qr_code_54.jpg b/img/qr_code_54.jpg
new file mode 100644
index 0000000..1245a16
Binary files /dev/null and b/img/qr_code_54.jpg differ
diff --git a/img/qr_code_55.jpg b/img/qr_code_55.jpg
new file mode 100644
index 0000000..8ff046c
Binary files /dev/null and b/img/qr_code_55.jpg differ
diff --git a/img/qr_code_56.jpg b/img/qr_code_56.jpg
new file mode 100644
index 0000000..f17458d
Binary files /dev/null and b/img/qr_code_56.jpg differ
diff --git a/init_database.py b/init_database.py
index 61d00e1..7fc8494 100644
--- a/init_database.py
+++ b/init_database.py
@@ -2,6 +2,8 @@ from server.knowledge_base.migrate import create_tables, folder2db, recreate_all
from configs.model_config import NLTK_DATA_PATH
import nltk
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
+from startup import dump_server_info
+
if __name__ == "__main__":
import argparse
@@ -21,6 +23,8 @@ if __name__ == "__main__":
)
args = parser.parse_args()
+ dump_server_info()
+
create_tables()
print("database talbes created")
diff --git a/requirements.txt b/requirements.txt
index 646a5c7..93908dd 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,4 +1,4 @@
-langchain==0.0.257
+langchain==0.0.266
openai
sentence_transformers
fschat==0.2.24
diff --git a/requirements_api.txt b/requirements_api.txt
index 1e13587..f567f9f 100644
--- a/requirements_api.txt
+++ b/requirements_api.txt
@@ -1,4 +1,4 @@
-langchain==0.0.257
+langchain==0.0.266
openai
sentence_transformers
fschat==0.2.24
diff --git a/server/api.py b/server/api.py
index 800680c..ecadd7c 100644
--- a/server/api.py
+++ b/server/api.py
@@ -4,7 +4,9 @@ import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
-from configs.model_config import NLTK_DATA_PATH, OPEN_CROSS_DOMAIN
+from configs.model_config import NLTK_DATA_PATH
+from configs.server_config import OPEN_CROSS_DOMAIN
+from configs import VERSION
import argparse
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
@@ -14,11 +16,10 @@ from server.chat import (chat, knowledge_base_chat, openai_chat,
from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb
from server.knowledge_base.kb_doc_api import (list_docs, upload_doc, delete_doc,
update_doc, download_doc, recreate_vector_store,
- search_docs, DocumentWithScore)
+ search_docs, DocumentWithScore)
from server.utils import BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline
from typing import List
-
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
@@ -27,7 +28,10 @@ async def document():
def create_app():
- app = FastAPI(title="Langchain-Chatchat API Server")
+ app = FastAPI(
+ title="Langchain-Chatchat API Server",
+ version=VERSION
+ )
MakeFastAPIOffline(app)
# Add CORS middleware to allow all origins
# 在config.py中设置OPEN_DOMAIN=True,允许跨域
@@ -75,10 +79,10 @@ def create_app():
)(create_kb)
app.post("/knowledge_base/delete_knowledge_base",
- tags=["Knowledge Base Management"],
- response_model=BaseResponse,
- summary="删除知识库"
- )(delete_kb)
+ tags=["Knowledge Base Management"],
+ response_model=BaseResponse,
+ summary="删除知识库"
+ )(delete_kb)
app.get("/knowledge_base/list_docs",
tags=["Knowledge Base Management"],
@@ -87,10 +91,10 @@ def create_app():
)(list_docs)
app.post("/knowledge_base/search_docs",
- tags=["Knowledge Base Management"],
- response_model=List[DocumentWithScore],
- summary="搜索知识库"
- )(search_docs)
+ tags=["Knowledge Base Management"],
+ response_model=List[DocumentWithScore],
+ summary="搜索知识库"
+ )(search_docs)
app.post("/knowledge_base/upload_doc",
tags=["Knowledge Base Management"],
@@ -99,10 +103,10 @@ def create_app():
)(upload_doc)
app.post("/knowledge_base/delete_doc",
- tags=["Knowledge Base Management"],
- response_model=BaseResponse,
- summary="删除知识库内指定文件"
- )(delete_doc)
+ tags=["Knowledge Base Management"],
+ response_model=BaseResponse,
+ summary="删除知识库内指定文件"
+ )(delete_doc)
app.post("/knowledge_base/update_doc",
tags=["Knowledge Base Management"],
diff --git a/server/api_allinone.py b/server/api_allinone_stale.py
similarity index 95%
rename from server/api_allinone.py
rename to server/api_allinone_stale.py
index 3be8581..78a7a6d 100644
--- a/server/api_allinone.py
+++ b/server/api_allinone_stale.py
@@ -15,7 +15,7 @@ import os
sys.path.append(os.path.dirname(__file__))
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
-from llm_api_launch import launch_all, parser, controller_args, worker_args, server_args
+from llm_api_stale import launch_all, parser, controller_args, worker_args, server_args
from api import create_app
import uvicorn
diff --git a/server/chat/chat.py b/server/chat/chat.py
index 2bc21db..2e939f1 100644
--- a/server/chat/chat.py
+++ b/server/chat/chat.py
@@ -21,7 +21,7 @@ def chat(query: str = Body(..., description="用户输入", examples=["恼羞成
),
stream: bool = Body(False, description="流式输出"),
):
- history = [History(**h) if isinstance(h, dict) else h for h in history]
+ history = [History.from_data(h) for h in history]
async def chat_iterator(query: str,
history: List[History] = [],
@@ -34,11 +34,13 @@ def chat(query: str = Body(..., description="用户输入", examples=["恼羞成
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
- model_name=LLM_MODEL
+ model_name=LLM_MODEL,
+ openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
)
+ input_msg = History(role="user", content="{{ input }}").to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
- [i.to_msg_tuple() for i in history] + [("human", "{input}")])
+ [i.to_msg_template() for i in history] + [input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model)
# Begin a task that runs in the background.
diff --git a/server/chat/knowledge_base_chat.py b/server/chat/knowledge_base_chat.py
index 84c62f0..2774569 100644
--- a/server/chat/knowledge_base_chat.py
+++ b/server/chat/knowledge_base_chat.py
@@ -38,7 +38,7 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
- history = [History(**h) if isinstance(h, dict) else h for h in history]
+ history = [History.from_data(h) for h in history]
async def knowledge_base_chat_iterator(query: str,
kb: KBService,
@@ -52,13 +52,15 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
- model_name=LLM_MODEL
+ model_name=LLM_MODEL,
+ openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
)
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
context = "\n".join([doc.page_content for doc in docs])
+ input_msg = History(role="user", content=PROMPT_TEMPLATE).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
- [i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)])
+ [i.to_msg_template() for i in history] + [input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model)
diff --git a/server/chat/search_engine_chat.py b/server/chat/search_engine_chat.py
index 15834d0..032d06a 100644
--- a/server/chat/search_engine_chat.py
+++ b/server/chat/search_engine_chat.py
@@ -73,6 +73,8 @@ def search_engine_chat(query: str = Body(..., description="用户输入", exampl
if search_engine_name not in SEARCH_ENGINES.keys():
return BaseResponse(code=404, msg=f"未支持搜索引擎 {search_engine_name}")
+ history = [History.from_data(h) for h in history]
+
async def search_engine_chat_iterator(query: str,
search_engine_name: str,
top_k: int,
@@ -85,14 +87,16 @@ def search_engine_chat(query: str = Body(..., description="用户输入", exampl
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
- model_name=LLM_MODEL
+ model_name=LLM_MODEL,
+ openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
)
docs = lookup_search_engine(query, search_engine_name, top_k)
context = "\n".join([doc.page_content for doc in docs])
+ input_msg = History(role="user", content=PROMPT_TEMPLATE).to_msg_template(False)
chat_prompt = ChatPromptTemplate.from_messages(
- [i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)])
+ [i.to_msg_template() for i in history] + [input_msg])
chain = LLMChain(prompt=chat_prompt, llm=model)
@@ -117,7 +121,7 @@ def search_engine_chat(query: str = Body(..., description="用户输入", exampl
answer = ""
async for token in callback.aiter():
answer += token
- yield json.dumps({"answer": token,
+ yield json.dumps({"answer": answer,
"docs": source_documents},
ensure_ascii=False)
await task
diff --git a/server/chat/utils.py b/server/chat/utils.py
index f8afb10..2167f10 100644
--- a/server/chat/utils.py
+++ b/server/chat/utils.py
@@ -1,6 +1,7 @@
import asyncio
-from typing import Awaitable
+from typing import Awaitable, List, Tuple, Dict, Union
from pydantic import BaseModel, Field
+from langchain.prompts.chat import ChatMessagePromptTemplate
async def wrap_done(fn: Awaitable, event: asyncio.Event):
@@ -28,3 +29,29 @@ class History(BaseModel):
def to_msg_tuple(self):
return "ai" if self.role=="assistant" else "human", self.content
+
+ def to_msg_template(self, is_raw=True) -> ChatMessagePromptTemplate:
+ role_maps = {
+ "ai": "assistant",
+ "human": "user",
+ }
+ role = role_maps.get(self.role, self.role)
+ if is_raw: # 当前默认历史消息都是没有input_variable的文本。
+ content = "{% raw %}" + self.content + "{% endraw %}"
+ else:
+ content = self.content
+
+ return ChatMessagePromptTemplate.from_template(
+ content,
+ "jinja2",
+ role=role,
+ )
+
+ @classmethod
+ def from_data(cls, h: Union[List, Tuple, Dict]) -> "History":
+ if isinstance(h, (list,tuple)) and len(h) >= 2:
+ h = cls(role=h[0], content=h[1])
+ elif isinstance(h, dict):
+ h = cls(**h)
+
+ return h
diff --git a/server/knowledge_base/kb_api.py b/server/knowledge_base/kb_api.py
index 4753ba4..b9151b8 100644
--- a/server/knowledge_base/kb_api.py
+++ b/server/knowledge_base/kb_api.py
@@ -15,7 +15,7 @@ async def list_kbs():
async def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
vector_store_type: str = Body("faiss"),
embed_model: str = Body(EMBEDDING_MODEL),
- ):
+ ) -> BaseResponse:
# Create selected knowledge base
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
@@ -27,13 +27,18 @@ async def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
return BaseResponse(code=404, msg=f"已存在同名知识库 {knowledge_base_name}")
kb = KBServiceFactory.get_service(knowledge_base_name, vector_store_type, embed_model)
- kb.create_kb()
+ try:
+ kb.create_kb()
+ except Exception as e:
+ print(e)
+ return BaseResponse(code=500, msg=f"创建知识库出错: {e}")
+
return BaseResponse(code=200, msg=f"已新增知识库 {knowledge_base_name}")
async def delete_kb(
knowledge_base_name: str = Body(..., examples=["samples"])
- ):
+ ) -> BaseResponse:
# Delete selected knowledge base
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
@@ -51,5 +56,6 @@ async def delete_kb(
return BaseResponse(code=200, msg=f"成功删除知识库 {knowledge_base_name}")
except Exception as e:
print(e)
+ return BaseResponse(code=500, msg=f"删除知识库时出现意外: {e}")
return BaseResponse(code=500, msg=f"删除知识库失败 {knowledge_base_name}")
diff --git a/server/knowledge_base/kb_doc_api.py b/server/knowledge_base/kb_doc_api.py
index 0bf2cb7..ae027c1 100644
--- a/server/knowledge_base/kb_doc_api.py
+++ b/server/knowledge_base/kb_doc_api.py
@@ -22,7 +22,7 @@ def search_docs(query: str = Body(..., description="用户输入", examples=["
) -> List[DocumentWithScore]:
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
if kb is None:
- return {"code": 404, "msg": f"未找到知识库 {knowledge_base_name}", "docs": []}
+ return []
docs = kb.search_docs(query, top_k, score_threshold)
data = [DocumentWithScore(**x[0].dict(), score=x[1]) for x in docs]
@@ -31,7 +31,7 @@ def search_docs(query: str = Body(..., description="用户输入", examples=["
async def list_docs(
knowledge_base_name: str
-):
+) -> ListResponse:
if not validate_kb_name(knowledge_base_name):
return ListResponse(code=403, msg="Don't attack me", data=[])
@@ -41,13 +41,14 @@ async def list_docs(
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
else:
all_doc_names = kb.list_docs()
- return ListResponse(data=all_doc_names)
+ return ListResponse(data=all_doc_names)
async def upload_doc(file: UploadFile = File(..., description="上传文件"),
knowledge_base_name: str = Form(..., description="知识库名称", examples=["kb1"]),
override: bool = Form(False, description="覆盖已有文件"),
- ):
+ not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"),
+ ) -> BaseResponse:
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
@@ -57,31 +58,38 @@ async def upload_doc(file: UploadFile = File(..., description="上传文件"),
file_content = await file.read() # 读取上传文件的内容
- kb_file = KnowledgeFile(filename=file.filename,
- knowledge_base_name=knowledge_base_name)
-
- if (os.path.exists(kb_file.filepath)
- and not override
- and os.path.getsize(kb_file.filepath) == len(file_content)
- ):
- # TODO: filesize 不同后的处理
- file_status = f"文件 {kb_file.filename} 已存在。"
- return BaseResponse(code=404, msg=file_status)
-
try:
+ kb_file = KnowledgeFile(filename=file.filename,
+ knowledge_base_name=knowledge_base_name)
+
+ if (os.path.exists(kb_file.filepath)
+ and not override
+ and os.path.getsize(kb_file.filepath) == len(file_content)
+ ):
+ # TODO: filesize 不同后的处理
+ file_status = f"文件 {kb_file.filename} 已存在。"
+ return BaseResponse(code=404, msg=file_status)
+
with open(kb_file.filepath, "wb") as f:
f.write(file_content)
except Exception as e:
+ print(e)
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件上传失败,报错信息为: {e}")
- kb.add_doc(kb_file)
+ try:
+ kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
+ except Exception as e:
+ print(e)
+ return BaseResponse(code=500, msg=f"{kb_file.filename} 文件向量化失败,报错信息为: {e}")
+
return BaseResponse(code=200, msg=f"成功上传文件 {kb_file.filename}")
async def delete_doc(knowledge_base_name: str = Body(..., examples=["samples"]),
doc_name: str = Body(..., examples=["file_name.md"]),
delete_content: bool = Body(False),
- ):
+ not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
+ ) -> BaseResponse:
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
@@ -92,17 +100,23 @@ async def delete_doc(knowledge_base_name: str = Body(..., examples=["samples"]),
if not kb.exist_doc(doc_name):
return BaseResponse(code=404, msg=f"未找到文件 {doc_name}")
- kb_file = KnowledgeFile(filename=doc_name,
- knowledge_base_name=knowledge_base_name)
- kb.delete_doc(kb_file, delete_content)
+
+ try:
+ kb_file = KnowledgeFile(filename=doc_name,
+ knowledge_base_name=knowledge_base_name)
+ kb.delete_doc(kb_file, delete_content, not_refresh_vs_cache=not_refresh_vs_cache)
+ except Exception as e:
+ print(e)
+ return BaseResponse(code=500, msg=f"{kb_file.filename} 文件删除失败,错误信息:{e}")
+
return BaseResponse(code=200, msg=f"{kb_file.filename} 文件删除成功")
- # return BaseResponse(code=500, msg=f"{kb_file.filename} 文件删除失败")
async def update_doc(
knowledge_base_name: str = Body(..., examples=["samples"]),
file_name: str = Body(..., examples=["file_name"]),
- ):
+ not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
+ ) -> BaseResponse:
'''
更新知识库文档
'''
@@ -113,14 +127,17 @@ async def update_doc(
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
- kb_file = KnowledgeFile(filename=file_name,
- knowledge_base_name=knowledge_base_name)
+ try:
+ kb_file = KnowledgeFile(filename=file_name,
+ knowledge_base_name=knowledge_base_name)
+ if os.path.exists(kb_file.filepath):
+ kb.update_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
+ return BaseResponse(code=200, msg=f"成功更新文件 {kb_file.filename}")
+ except Exception as e:
+ print(e)
+ return BaseResponse(code=500, msg=f"{kb_file.filename} 文件更新失败,错误信息是:{e}")
- if os.path.exists(kb_file.filepath):
- kb.update_doc(kb_file)
- return BaseResponse(code=200, msg=f"成功更新文件 {kb_file.filename}")
- else:
- return BaseResponse(code=500, msg=f"{kb_file.filename} 文件更新失败")
+ return BaseResponse(code=500, msg=f"{kb_file.filename} 文件更新失败")
async def download_doc(
@@ -137,18 +154,20 @@ async def download_doc(
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
- kb_file = KnowledgeFile(filename=file_name,
- knowledge_base_name=knowledge_base_name)
-
- if os.path.exists(kb_file.filepath):
- return FileResponse(
- path=kb_file.filepath,
- filename=kb_file.filename,
- media_type="multipart/form-data")
- else:
- return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败")
+ try:
+ kb_file = KnowledgeFile(filename=file_name,
+ knowledge_base_name=knowledge_base_name)
+ if os.path.exists(kb_file.filepath):
+ return FileResponse(
+ path=kb_file.filepath,
+ filename=kb_file.filename,
+ media_type="multipart/form-data")
+ except Exception as e:
+ print(e)
+ return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败,错误信息是:{e}")
+ return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败")
async def recreate_vector_store(
@@ -163,24 +182,35 @@ async def recreate_vector_store(
by default, get_service_by_name only return knowledge base in the info.db and having document files in it.
set allow_empty_kb to True make it applied on empty knowledge base which it not in the info.db or having no documents.
'''
- kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
- if not kb.exists() and not allow_empty_kb:
- return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
- async def output(kb):
- kb.create_kb()
- kb.clear_vs()
- docs = list_docs_from_folder(knowledge_base_name)
- for i, doc in enumerate(docs):
- try:
- kb_file = KnowledgeFile(doc, knowledge_base_name)
- yield json.dumps({
- "total": len(docs),
- "finished": i,
- "doc": doc,
- }, ensure_ascii=False)
- kb.add_doc(kb_file)
- except Exception as e:
- print(e)
+ async def output():
+ kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
+ if not kb.exists() and not allow_empty_kb:
+ yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
+ else:
+ kb.create_kb()
+ kb.clear_vs()
+ docs = list_docs_from_folder(knowledge_base_name)
+ for i, doc in enumerate(docs):
+ try:
+ kb_file = KnowledgeFile(doc, knowledge_base_name)
+ yield json.dumps({
+ "code": 200,
+ "msg": f"({i + 1} / {len(docs)}): {doc}",
+ "total": len(docs),
+ "finished": i,
+ "doc": doc,
+ }, ensure_ascii=False)
+ if i == len(docs) - 1:
+ not_refresh_vs_cache = False
+ else:
+ not_refresh_vs_cache = True
+ kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
+ except Exception as e:
+ print(e)
+ yield json.dumps({
+ "code": 500,
+ "msg": f"添加文件‘{doc}’到知识库‘{knowledge_base_name}’时出错:{e}。已跳过。",
+ })
- return StreamingResponse(output(kb), media_type="text/event-stream")
+ return StreamingResponse(output(), media_type="text/event-stream")
diff --git a/server/knowledge_base/kb_service/base.py b/server/knowledge_base/kb_service/base.py
index d506f63..8d1de48 100644
--- a/server/knowledge_base/kb_service/base.py
+++ b/server/knowledge_base/kb_service/base.py
@@ -71,36 +71,37 @@ class KBService(ABC):
status = delete_kb_from_db(self.kb_name)
return status
- def add_doc(self, kb_file: KnowledgeFile):
+ def add_doc(self, kb_file: KnowledgeFile, **kwargs):
"""
向知识库添加文件
"""
docs = kb_file.file2text()
if docs:
+ self.delete_doc(kb_file)
embeddings = self._load_embeddings()
- self.do_add_doc(docs, embeddings)
+ self.do_add_doc(docs, embeddings, **kwargs)
status = add_doc_to_db(kb_file)
else:
status = False
return status
- def delete_doc(self, kb_file: KnowledgeFile, delete_content: bool = False):
+ def delete_doc(self, kb_file: KnowledgeFile, delete_content: bool = False, **kwargs):
"""
从知识库删除文件
"""
- self.do_delete_doc(kb_file)
+ self.do_delete_doc(kb_file, **kwargs)
status = delete_file_from_db(kb_file)
if delete_content and os.path.exists(kb_file.filepath):
os.remove(kb_file.filepath)
return status
- def update_doc(self, kb_file: KnowledgeFile):
+ def update_doc(self, kb_file: KnowledgeFile, **kwargs):
"""
使用content中的文件更新向量库
"""
if os.path.exists(kb_file.filepath):
- self.delete_doc(kb_file)
- return self.add_doc(kb_file)
+ self.delete_doc(kb_file, **kwargs)
+ return self.add_doc(kb_file, **kwargs)
def exist_doc(self, file_name: str):
return doc_exists(KnowledgeFile(knowledge_base_name=self.kb_name,
@@ -156,6 +157,7 @@ class KBService(ABC):
def do_search(self,
query: str,
top_k: int,
+ score_threshold: float,
embeddings: Embeddings,
) -> List[Document]:
"""
diff --git a/server/knowledge_base/kb_service/faiss_kb_service.py b/server/knowledge_base/kb_service/faiss_kb_service.py
index 5c8376f..b3f5439 100644
--- a/server/knowledge_base/kb_service/faiss_kb_service.py
+++ b/server/knowledge_base/kb_service/faiss_kb_service.py
@@ -13,7 +13,8 @@ from functools import lru_cache
from server.knowledge_base.utils import get_vs_path, load_embeddings, KnowledgeFile
from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
-from langchain.embeddings.huggingface import HuggingFaceEmbeddings
+from langchain.embeddings.huggingface import HuggingFaceEmbeddings,HuggingFaceBgeEmbeddings
+from langchain.embeddings.openai import OpenAIEmbeddings
from typing import List
from langchain.docstore.document import Document
from server.utils import torch_gc
@@ -21,10 +22,19 @@ from server.utils import torch_gc
# make HuggingFaceEmbeddings hashable
def _embeddings_hash(self):
- return hash(self.model_name)
-
+ if isinstance(self, HuggingFaceEmbeddings):
+ return hash(self.model_name)
+ elif isinstance(self, HuggingFaceBgeEmbeddings):
+ return hash(self.model_name)
+ elif isinstance(self, OpenAIEmbeddings):
+ return hash(self.model)
HuggingFaceEmbeddings.__hash__ = _embeddings_hash
+OpenAIEmbeddings.__hash__ = _embeddings_hash
+HuggingFaceBgeEmbeddings.__hash__ = _embeddings_hash
+
+_VECTOR_STORE_TICKS = {}
+
_VECTOR_STORE_TICKS = {}
@@ -41,7 +51,23 @@ def load_vector_store(
vs_path = get_vs_path(knowledge_base_name)
if embeddings is None:
embeddings = load_embeddings(embed_model, embed_device)
- search_index = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
+
+ if not os.path.exists(vs_path):
+ os.makedirs(vs_path)
+
+ if "index.faiss" in os.listdir(vs_path):
+ search_index = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
+ else:
+ # create an empty vector store
+ doc = Document(page_content="init", metadata={})
+ search_index = FAISS.from_documents([doc], embeddings, normalize_L2=True)
+ ids = [k for k, v in search_index.docstore._dict.items()]
+ search_index.delete(ids)
+ search_index.save_local(vs_path)
+
+ if tick == 0: # vector store is loaded first time
+ _VECTOR_STORE_TICKS[knowledge_base_name] = 0
+
return search_index
@@ -50,6 +76,7 @@ def refresh_vs_cache(kb_name: str):
make vector store cache refreshed when next loading
"""
_VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1
+ print(f"知识库 {kb_name} 缓存刷新:{_VECTOR_STORE_TICKS[kb_name]}")
class FaissKBService(KBService):
@@ -74,8 +101,10 @@ class FaissKBService(KBService):
def do_create_kb(self):
if not os.path.exists(self.vs_path):
os.makedirs(self.vs_path)
+ load_vector_store(self.kb_name)
def do_drop_kb(self):
+ self.clear_vs()
shutil.rmtree(self.kb_path)
def do_search(self,
@@ -93,38 +122,40 @@ class FaissKBService(KBService):
def do_add_doc(self,
docs: List[Document],
embeddings: Embeddings,
+ **kwargs,
):
- if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path):
- vector_store = FAISS.load_local(self.vs_path, embeddings, normalize_L2=True)
- vector_store.add_documents(docs)
- torch_gc()
- else:
- if not os.path.exists(self.vs_path):
- os.makedirs(self.vs_path)
- vector_store = FAISS.from_documents(
- docs, embeddings, normalize_L2=True) # docs 为Document列表
- torch_gc()
- vector_store.save_local(self.vs_path)
- refresh_vs_cache(self.kb_name)
-
- def do_delete_doc(self,
- kb_file: KnowledgeFile):
- embeddings = self._load_embeddings()
- if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path):
- vector_store = FAISS.load_local(self.vs_path, embeddings, normalize_L2=True)
- ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
- if len(ids) == 0:
- return None
- vector_store.delete(ids)
+ vector_store = load_vector_store(self.kb_name,
+ embeddings=embeddings,
+ tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0))
+ vector_store.add_documents(docs)
+ torch_gc()
+ if not kwargs.get("not_refresh_vs_cache"):
vector_store.save_local(self.vs_path)
refresh_vs_cache(self.kb_name)
- return True
- else:
+
+ def do_delete_doc(self,
+ kb_file: KnowledgeFile,
+ **kwargs):
+ embeddings = self._load_embeddings()
+ vector_store = load_vector_store(self.kb_name,
+ embeddings=embeddings,
+ tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0))
+
+ ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
+ if len(ids) == 0:
return None
+ vector_store.delete(ids)
+ if not kwargs.get("not_refresh_vs_cache"):
+ vector_store.save_local(self.vs_path)
+ refresh_vs_cache(self.kb_name)
+
+ return True
+
def do_clear_vs(self):
shutil.rmtree(self.vs_path)
os.makedirs(self.vs_path)
+ refresh_vs_cache(self.kb_name)
def exist_doc(self, file_name: str):
if super().exist_doc(file_name):
diff --git a/server/knowledge_base/kb_service/milvus_kb_service.py b/server/knowledge_base/kb_service/milvus_kb_service.py
index f9c40c0..78c22f4 100644
--- a/server/knowledge_base/kb_service/milvus_kb_service.py
+++ b/server/knowledge_base/kb_service/milvus_kb_service.py
@@ -45,12 +45,12 @@ class MilvusKBService(KBService):
def do_drop_kb(self):
self.milvus.col.drop()
- def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings) -> List[Document]:
+ def do_search(self, query: str, top_k: int,score_threshold: float, embeddings: Embeddings):
# todo: support score threshold
self._load_milvus(embeddings=embeddings)
- return self.milvus.similarity_search(query, top_k, score_threshold=SCORE_THRESHOLD)
+ return self.milvus.similarity_search_with_score(query, top_k)
- def add_doc(self, kb_file: KnowledgeFile):
+ def add_doc(self, kb_file: KnowledgeFile, **kwargs):
"""
向知识库添加文件
"""
@@ -60,22 +60,24 @@ class MilvusKBService(KBService):
status = add_doc_to_db(kb_file)
return status
- def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
+ def do_add_doc(self, docs: List[Document], embeddings: Embeddings, **kwargs):
pass
- def do_delete_doc(self, kb_file: KnowledgeFile):
+ def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
filepath = kb_file.filepath.replace('\\', '\\\\')
delete_list = [item.get("pk") for item in
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
self.milvus.col.delete(expr=f'pk in {delete_list}')
def do_clear_vs(self):
- self.milvus.col.drop()
+ if not self.milvus.col:
+ self.milvus.col.drop()
if __name__ == '__main__':
# 测试建表使用
from server.db.base import Base, engine
+
Base.metadata.create_all(bind=engine)
milvusService = MilvusKBService("test")
milvusService.add_doc(KnowledgeFile("README.md", "test"))
diff --git a/server/knowledge_base/kb_service/pg_kb_service.py b/server/knowledge_base/kb_service/pg_kb_service.py
index a3126ec..6876bd8 100644
--- a/server/knowledge_base/kb_service/pg_kb_service.py
+++ b/server/knowledge_base/kb_service/pg_kb_service.py
@@ -43,12 +43,12 @@ class PGKBService(KBService):
'''))
connect.commit()
- def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings) -> List[Document]:
+ def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings):
# todo: support score threshold
self._load_pg_vector(embeddings=embeddings)
- return self.pg_vector.similarity_search(query, top_k)
+ return self.pg_vector.similarity_search_with_score(query, top_k)
- def add_doc(self, kb_file: KnowledgeFile):
+ def add_doc(self, kb_file: KnowledgeFile, **kwargs):
"""
向知识库添加文件
"""
@@ -58,10 +58,10 @@ class PGKBService(KBService):
status = add_doc_to_db(kb_file)
return status
- def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
+ def do_add_doc(self, docs: List[Document], embeddings: Embeddings, **kwargs):
pass
- def do_delete_doc(self, kb_file: KnowledgeFile):
+ def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
with self.pg_vector.connect() as connect:
filepath = kb_file.filepath.replace('\\', '\\\\')
connect.execute(
@@ -76,6 +76,7 @@ class PGKBService(KBService):
if __name__ == '__main__':
from server.db.base import Base, engine
+
Base.metadata.create_all(bind=engine)
pGKBService = PGKBService("test")
pGKBService.create_kb()
diff --git a/server/knowledge_base/migrate.py b/server/knowledge_base/migrate.py
index 1c023fa..c96d386 100644
--- a/server/knowledge_base/migrate.py
+++ b/server/knowledge_base/migrate.py
@@ -43,7 +43,11 @@ def folder2db(
kb_file = KnowledgeFile(doc, kb_name)
if callable(callback_before):
callback_before(kb_file, i, docs)
- kb.add_doc(kb_file)
+ if i == len(docs) - 1:
+ not_refresh_vs_cache = False
+ else:
+ not_refresh_vs_cache = True
+ kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
if callable(callback_after):
callback_after(kb_file, i, docs)
except Exception as e:
@@ -67,7 +71,11 @@ def folder2db(
kb_file = KnowledgeFile(doc, kb_name)
if callable(callback_before):
callback_before(kb_file, i, docs)
- kb.update_doc(kb_file)
+ if i == len(docs) - 1:
+ not_refresh_vs_cache = False
+ else:
+ not_refresh_vs_cache = True
+ kb.update_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
if callable(callback_after):
callback_after(kb_file, i, docs)
except Exception as e:
@@ -81,7 +89,11 @@ def folder2db(
kb_file = KnowledgeFile(doc, kb_name)
if callable(callback_before):
callback_before(kb_file, i, docs)
- kb.add_doc(kb_file)
+ if i == len(docs) - 1:
+ not_refresh_vs_cache = False
+ else:
+ not_refresh_vs_cache = True
+ kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
if callable(callback_after):
callback_after(kb_file, i, docs)
except Exception as e:
diff --git a/server/knowledge_base/utils.py b/server/knowledge_base/utils.py
index 3ab6560..da53049 100644
--- a/server/knowledge_base/utils.py
+++ b/server/knowledge_base/utils.py
@@ -1,5 +1,7 @@
import os
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
+from langchain.embeddings.openai import OpenAIEmbeddings
+from langchain.embeddings import HuggingFaceBgeEmbeddings
from configs.model_config import (
embedding_model_dict,
KB_ROOT_PATH,
@@ -41,11 +43,20 @@ def list_docs_from_folder(kb_name: str):
@lru_cache(1)
def load_embeddings(model: str, device: str):
- embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
- model_kwargs={'device': device})
+ if model == "text-embedding-ada-002": # openai text-embedding-ada-002
+ embeddings = OpenAIEmbeddings(openai_api_key=embedding_model_dict[model], chunk_size=CHUNK_SIZE)
+ elif 'bge-' in model:
+ embeddings = HuggingFaceBgeEmbeddings(model_name=embedding_model_dict[model],
+ model_kwargs={'device': device},
+ query_instruction="为这个句子生成表示以用于检索相关文章:")
+ if model == "bge-large-zh-noinstruct": # bge large -noinstruct embedding
+ embeddings.query_instruction = ""
+ else:
+ embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model], model_kwargs={'device': device})
return embeddings
+
LOADER_DICT = {"UnstructuredFileLoader": ['.eml', '.html', '.json', '.md', '.msg', '.rst',
'.rtf', '.txt', '.xml',
'.doc', '.docx', '.epub', '.odt', '.pdf',
@@ -69,7 +80,7 @@ class KnowledgeFile:
):
self.kb_name = knowledge_base_name
self.filename = filename
- self.ext = os.path.splitext(filename)[-1]
+ self.ext = os.path.splitext(filename)[-1].lower()
if self.ext not in SUPPORTED_EXTS:
raise ValueError(f"暂未支持的文件格式 {self.ext}")
self.filepath = get_file_path(knowledge_base_name, filename)
diff --git a/server/llm_api_launch.py b/server/llm_api_stale.py
similarity index 98%
rename from server/llm_api_launch.py
rename to server/llm_api_stale.py
index 0f7710a..cb02e0d 100644
--- a/server/llm_api_launch.py
+++ b/server/llm_api_stale.py
@@ -1,5 +1,5 @@
"""
-调用示例: python llm_api_launch.py --model-path-address THUDM/chatglm2-6b@localhost@7650 THUDM/chatglm2-6b-32k@localhost@7651
+调用示例: python llm_api_stale.py --model-path-address THUDM/chatglm2-6b@localhost@7650 THUDM/chatglm2-6b-32k@localhost@7651
其他fastchat.server.controller/worker/openai_api_server参数可按照fastchat文档调用
但少数非关键参数如--worker-address,--allowed-origins,--allowed-methods,--allowed-headers不支持
diff --git a/server/utils.py b/server/utils.py
index c0f11a5..4a88722 100644
--- a/server/utils.py
+++ b/server/utils.py
@@ -9,8 +9,8 @@ from typing import Any, Optional
class BaseResponse(BaseModel):
- code: int = pydantic.Field(200, description="HTTP status code")
- msg: str = pydantic.Field("success", description="HTTP status message")
+ code: int = pydantic.Field(200, description="API status code")
+ msg: str = pydantic.Field("success", description="API status message")
class Config:
schema_extra = {
diff --git a/webui_allinone.py b/server/webui_allinone_stale.py
similarity index 93%
rename from webui_allinone.py
rename to server/webui_allinone_stale.py
index 2992ae5..627f956 100644
--- a/webui_allinone.py
+++ b/server/webui_allinone_stale.py
@@ -20,9 +20,9 @@ from webui_pages.utils import *
from streamlit_option_menu import option_menu
from webui_pages import *
import os
-from server.llm_api_launch import string_args,launch_all,controller_args,worker_args,server_args,LOG_PATH
+from server.llm_api_stale import string_args,launch_all,controller_args,worker_args,server_args,LOG_PATH
-from server.api_allinone import parser, api_args
+from server.api_allinone_stale import parser, api_args
import subprocess
parser.add_argument("--use-remote-api",action="store_true")
diff --git a/startup.py b/startup.py
new file mode 100644
index 0000000..df00851
--- /dev/null
+++ b/startup.py
@@ -0,0 +1,472 @@
+from multiprocessing import Process, Queue
+import multiprocessing as mp
+import subprocess
+import sys
+import os
+from pprint import pprint
+
+# 设置numexpr最大线程数,默认为CPU核心数
+try:
+ import numexpr
+ n_cores = numexpr.utils.detect_number_of_cores()
+ os.environ["NUMEXPR_MAX_THREADS"] = str(n_cores)
+except:
+ pass
+
+sys.path.append(os.path.dirname(os.path.dirname(__file__)))
+from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, \
+ logger
+from configs.server_config import (WEBUI_SERVER, API_SERVER, OPEN_CROSS_DOMAIN, FSCHAT_CONTROLLER, FSCHAT_MODEL_WORKERS,
+ FSCHAT_OPENAI_API, fschat_controller_address, fschat_model_worker_address,
+ fschat_openai_api_address, )
+from server.utils import MakeFastAPIOffline, FastAPI
+import argparse
+from typing import Tuple, List
+from configs import VERSION
+
+
+def set_httpx_timeout(timeout=60.0):
+ import httpx
+ httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
+ httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
+ httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
+
+
+def create_controller_app(
+ dispatch_method: str,
+) -> FastAPI:
+ import fastchat.constants
+ fastchat.constants.LOGDIR = LOG_PATH
+ from fastchat.serve.controller import app, Controller
+
+ controller = Controller(dispatch_method)
+ sys.modules["fastchat.serve.controller"].controller = controller
+
+ MakeFastAPIOffline(app)
+ app.title = "FastChat Controller"
+ return app
+
+
+def create_model_worker_app(**kwargs) -> Tuple[argparse.ArgumentParser, FastAPI]:
+ import fastchat.constants
+ fastchat.constants.LOGDIR = LOG_PATH
+ from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id
+ import argparse
+ import threading
+ import fastchat.serve.model_worker
+
+ # workaround to make program exit with Ctrl+c
+ # it should be deleted after pr is merged by fastchat
+ def _new_init_heart_beat(self):
+ self.register_to_controller()
+ self.heart_beat_thread = threading.Thread(
+ target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
+ )
+ self.heart_beat_thread.start()
+
+ ModelWorker.init_heart_beat = _new_init_heart_beat
+
+ parser = argparse.ArgumentParser()
+ args = parser.parse_args([])
+ # default args. should be deleted after pr is merged by fastchat
+ args.gpus = None
+ args.max_gpu_memory = "20GiB"
+ args.load_8bit = False
+ args.cpu_offloading = None
+ args.gptq_ckpt = None
+ args.gptq_wbits = 16
+ args.gptq_groupsize = -1
+ args.gptq_act_order = False
+ args.awq_ckpt = None
+ args.awq_wbits = 16
+ args.awq_groupsize = -1
+ args.num_gpus = 1
+ args.model_names = []
+ args.conv_template = None
+ args.limit_worker_concurrency = 5
+ args.stream_interval = 2
+ args.no_register = False
+
+ for k, v in kwargs.items():
+ setattr(args, k, v)
+
+ if args.gpus:
+ if args.num_gpus is None:
+ args.num_gpus = len(args.gpus.split(','))
+ if len(args.gpus.split(",")) < args.num_gpus:
+ raise ValueError(
+ f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
+ )
+ os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
+
+ gptq_config = GptqConfig(
+ ckpt=args.gptq_ckpt or args.model_path,
+ wbits=args.gptq_wbits,
+ groupsize=args.gptq_groupsize,
+ act_order=args.gptq_act_order,
+ )
+ awq_config = AWQConfig(
+ ckpt=args.awq_ckpt or args.model_path,
+ wbits=args.awq_wbits,
+ groupsize=args.awq_groupsize,
+ )
+
+ worker = ModelWorker(
+ controller_addr=args.controller_address,
+ worker_addr=args.worker_address,
+ worker_id=worker_id,
+ model_path=args.model_path,
+ model_names=args.model_names,
+ limit_worker_concurrency=args.limit_worker_concurrency,
+ no_register=args.no_register,
+ device=args.device,
+ num_gpus=args.num_gpus,
+ max_gpu_memory=args.max_gpu_memory,
+ load_8bit=args.load_8bit,
+ cpu_offloading=args.cpu_offloading,
+ gptq_config=gptq_config,
+ awq_config=awq_config,
+ stream_interval=args.stream_interval,
+ conv_template=args.conv_template,
+ )
+
+ sys.modules["fastchat.serve.model_worker"].worker = worker
+ sys.modules["fastchat.serve.model_worker"].args = args
+ sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
+
+ MakeFastAPIOffline(app)
+ app.title = f"FastChat LLM Server ({LLM_MODEL})"
+ return app
+
+
+def create_openai_api_app(
+ controller_address: str,
+ api_keys: List = [],
+) -> FastAPI:
+ import fastchat.constants
+ fastchat.constants.LOGDIR = LOG_PATH
+ from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
+
+ app.add_middleware(
+ CORSMiddleware,
+ allow_credentials=True,
+ allow_origins=["*"],
+ allow_methods=["*"],
+ allow_headers=["*"],
+ )
+
+ app_settings.controller_address = controller_address
+ app_settings.api_keys = api_keys
+
+ MakeFastAPIOffline(app)
+ app.title = "FastChat OpeanAI API Server"
+ return app
+
+
+def _set_app_seq(app: FastAPI, q: Queue, run_seq: int):
+ if run_seq == 1:
+ @app.on_event("startup")
+ async def on_startup():
+ set_httpx_timeout()
+ q.put(run_seq)
+ elif run_seq > 1:
+ @app.on_event("startup")
+ async def on_startup():
+ set_httpx_timeout()
+ while True:
+ no = q.get()
+ if no != run_seq - 1:
+ q.put(no)
+ else:
+ break
+ q.put(run_seq)
+
+
+def run_controller(q: Queue, run_seq: int = 1):
+ import uvicorn
+
+ app = create_controller_app(FSCHAT_CONTROLLER.get("dispatch_method"))
+ _set_app_seq(app, q, run_seq)
+
+ host = FSCHAT_CONTROLLER["host"]
+ port = FSCHAT_CONTROLLER["port"]
+ uvicorn.run(app, host=host, port=port)
+
+
+def run_model_worker(
+ model_name: str = LLM_MODEL,
+ controller_address: str = "",
+ q: Queue = None,
+ run_seq: int = 2,
+):
+ import uvicorn
+
+ kwargs = FSCHAT_MODEL_WORKERS[LLM_MODEL].copy()
+ host = kwargs.pop("host")
+ port = kwargs.pop("port")
+ model_path = llm_model_dict[model_name].get("local_model_path", "")
+ kwargs["model_path"] = model_path
+ kwargs["model_names"] = [model_name]
+ kwargs["controller_address"] = controller_address or fschat_controller_address()
+ kwargs["worker_address"] = fschat_model_worker_address()
+
+ app = create_model_worker_app(**kwargs)
+ _set_app_seq(app, q, run_seq)
+
+ uvicorn.run(app, host=host, port=port)
+
+
+def run_openai_api(q: Queue, run_seq: int = 3):
+ import uvicorn
+
+ controller_addr = fschat_controller_address()
+ app = create_openai_api_app(controller_addr) # todo: not support keys yet.
+ _set_app_seq(app, q, run_seq)
+
+ host = FSCHAT_OPENAI_API["host"]
+ port = FSCHAT_OPENAI_API["port"]
+ uvicorn.run(app, host=host, port=port)
+
+
+def run_api_server(q: Queue, run_seq: int = 4):
+ from server.api import create_app
+ import uvicorn
+
+ app = create_app()
+ _set_app_seq(app, q, run_seq)
+
+ host = API_SERVER["host"]
+ port = API_SERVER["port"]
+
+ uvicorn.run(app, host=host, port=port)
+
+
+def run_webui(q: Queue, run_seq: int = 5):
+ host = WEBUI_SERVER["host"]
+ port = WEBUI_SERVER["port"]
+ while True:
+ no = q.get()
+ if no != run_seq - 1:
+ q.put(no)
+ else:
+ break
+ q.put(run_seq)
+ p = subprocess.Popen(["streamlit", "run", "webui.py",
+ "--server.address", host,
+ "--server.port", str(port)])
+ p.wait()
+
+
+def parse_args() -> argparse.ArgumentParser:
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "-a",
+ "--all-webui",
+ action="store_true",
+ help="run fastchat's controller/openai_api/model_worker servers, run api.py and webui.py",
+ dest="all_webui",
+ )
+ parser.add_argument(
+ "--all-api",
+ action="store_true",
+ help="run fastchat's controller/openai_api/model_worker servers, run api.py",
+ dest="all_api",
+ )
+ parser.add_argument(
+ "--llm-api",
+ action="store_true",
+ help="run fastchat's controller/openai_api/model_worker servers",
+ dest="llm_api",
+ )
+ parser.add_argument(
+ "-o",
+ "--openai-api",
+ action="store_true",
+ help="run fastchat's controller/openai_api servers",
+ dest="openai_api",
+ )
+ parser.add_argument(
+ "-m",
+ "--model-worker",
+ action="store_true",
+ help="run fastchat's model_worker server with specified model name. specify --model-name if not using default LLM_MODEL",
+ dest="model_worker",
+ )
+ parser.add_argument(
+ "-n",
+ "--model-name",
+ type=str,
+ default=LLM_MODEL,
+ help="specify model name for model worker.",
+ dest="model_name",
+ )
+ parser.add_argument(
+ "-c",
+ "--controller",
+ type=str,
+ help="specify controller address the worker is registered to. default is server_config.FSCHAT_CONTROLLER",
+ dest="controller_address",
+ )
+ parser.add_argument(
+ "--api",
+ action="store_true",
+ help="run api.py server",
+ dest="api",
+ )
+ parser.add_argument(
+ "-w",
+ "--webui",
+ action="store_true",
+ help="run webui.py server",
+ dest="webui",
+ )
+ args = parser.parse_args()
+ return args
+
+
+def dump_server_info(after_start=False):
+ import platform
+ import langchain
+ import fastchat
+ from configs.server_config import api_address, webui_address
+
+ print("\n\n")
+ print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
+ print(f"操作系统:{platform.platform()}.")
+ print(f"python版本:{sys.version}")
+ print(f"项目版本:{VERSION}")
+ print(f"langchain版本:{langchain.__version__}. fastchat版本:{fastchat.__version__}")
+ print("\n")
+ print(f"当前LLM模型:{LLM_MODEL} @ {LLM_DEVICE}")
+ pprint(llm_model_dict[LLM_MODEL])
+ print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {EMBEDDING_DEVICE}")
+ if after_start:
+ print("\n")
+ print(f"服务端运行信息:")
+ if args.openai_api:
+ print(f" OpenAI API Server: {fschat_openai_api_address()}/v1")
+ print(" (请确认llm_model_dict中配置的api_base_url与上面地址一致。)")
+ if args.api:
+ print(f" Chatchat API Server: {api_address()}")
+ if args.webui:
+ print(f" Chatchat WEBUI Server: {webui_address()}")
+ print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
+ print("\n\n")
+
+
+if __name__ == "__main__":
+ import time
+
+ mp.set_start_method("spawn")
+ queue = Queue()
+ args = parse_args()
+ if args.all_webui:
+ args.openai_api = True
+ args.model_worker = True
+ args.api = True
+ args.webui = True
+
+ elif args.all_api:
+ args.openai_api = True
+ args.model_worker = True
+ args.api = True
+ args.webui = False
+
+ elif args.llm_api:
+ args.openai_api = True
+ args.model_worker = True
+ args.api = False
+ args.webui = False
+
+ dump_server_info()
+ logger.info(f"正在启动服务:")
+ logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
+
+ processes = {}
+
+ if args.openai_api:
+ process = Process(
+ target=run_controller,
+ name=f"controller({os.getpid()})",
+ args=(queue, len(processes) + 1),
+ daemon=True,
+ )
+ process.start()
+ processes["controller"] = process
+
+ process = Process(
+ target=run_openai_api,
+ name=f"openai_api({os.getpid()})",
+ args=(queue, len(processes) + 1),
+ daemon=True,
+ )
+ process.start()
+ processes["openai_api"] = process
+
+ if args.model_worker:
+ process = Process(
+ target=run_model_worker,
+ name=f"model_worker({os.getpid()})",
+ args=(args.model_name, args.controller_address, queue, len(processes) + 1),
+ daemon=True,
+ )
+ process.start()
+ processes["model_worker"] = process
+
+ if args.api:
+ process = Process(
+ target=run_api_server,
+ name=f"API Server{os.getpid()})",
+ args=(queue, len(processes) + 1),
+ daemon=True,
+ )
+ process.start()
+ processes["api"] = process
+
+ if args.webui:
+ process = Process(
+ target=run_webui,
+ name=f"WEBUI Server{os.getpid()})",
+ args=(queue, len(processes) + 1),
+ daemon=True,
+ )
+ process.start()
+ processes["webui"] = process
+
+ try:
+ # log infors
+ while True:
+ no = queue.get()
+ if no == len(processes):
+ time.sleep(0.5)
+ dump_server_info(True)
+ break
+ else:
+ queue.put(no)
+
+ if model_worker_process := processes.get("model_worker"):
+ model_worker_process.join()
+ for name, process in processes.items():
+ if name != "model_worker":
+ process.join()
+ except:
+ if model_worker_process := processes.get("model_worker"):
+ model_worker_process.terminate()
+ for name, process in processes.items():
+ if name != "model_worker":
+ process.terminate()
+
+# 服务启动后接口调用示例:
+# import openai
+# openai.api_key = "EMPTY" # Not support yet
+# openai.api_base = "http://localhost:8888/v1"
+
+# model = "chatglm2-6b"
+
+# # create a chat completion
+# completion = openai.ChatCompletion.create(
+# model=model,
+# messages=[{"role": "user", "content": "Hello! What is your name?"}]
+# )
+# # print the completion
+# print(completion.choices[0].message.content)
diff --git a/tests/api/stream_api_test.py b/tests/api/stream_api_test.py
index 06a9654..2902c8a 100644
--- a/tests/api/stream_api_test.py
+++ b/tests/api/stream_api_test.py
@@ -28,4 +28,14 @@ if __name__ == "__main__":
for line in response.iter_content(decode_unicode=True):
print(line, flush=True)
else:
- print("Error:", response.status_code)
\ No newline at end of file
+ print("Error:", response.status_code)
+
+
+ r = requests.post(
+ openai_url + "/chat/completions",
+ json={"model": LLM_MODEL, "messages": "你好", "max_tokens": 1000})
+ data = r.json()
+ print(f"/chat/completions\n")
+ print(data)
+ assert "choices" in data
+
diff --git a/tests/api/test_kb_api.py b/tests/api/test_kb_api.py
new file mode 100644
index 0000000..5a8b97d
--- /dev/null
+++ b/tests/api/test_kb_api.py
@@ -0,0 +1,204 @@
+from doctest import testfile
+import requests
+import json
+import sys
+from pathlib import Path
+
+root_path = Path(__file__).parent.parent.parent
+sys.path.append(str(root_path))
+from configs.server_config import api_address
+from configs.model_config import VECTOR_SEARCH_TOP_K
+from server.knowledge_base.utils import get_kb_path
+
+from pprint import pprint
+
+
+api_base_url = api_address()
+
+kb = "kb_for_api_test"
+test_files = {
+ "README.MD": str(root_path / "README.MD"),
+ "FAQ.MD": str(root_path / "docs" / "FAQ.MD")
+}
+
+
+def test_delete_kb_before(api="/knowledge_base/delete_knowledge_base"):
+ if not Path(get_kb_path(kb)).exists():
+ return
+
+ url = api_base_url + api
+ print("\n测试知识库存在,需要删除")
+ r = requests.post(url, json=kb)
+ data = r.json()
+ pprint(data)
+
+ # check kb not exists anymore
+ url = api_base_url + "/knowledge_base/list_knowledge_bases"
+ print("\n获取知识库列表:")
+ r = requests.get(url)
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert isinstance(data["data"], list) and len(data["data"]) > 0
+ assert kb not in data["data"]
+
+
+def test_create_kb(api="/knowledge_base/create_knowledge_base"):
+ url = api_base_url + api
+
+ print(f"\n尝试用空名称创建知识库:")
+ r = requests.post(url, json={"knowledge_base_name": " "})
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 404
+ assert data["msg"] == "知识库名称不能为空,请重新填写知识库名称"
+
+ print(f"\n创建新知识库: {kb}")
+ r = requests.post(url, json={"knowledge_base_name": kb})
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert data["msg"] == f"已新增知识库 {kb}"
+
+ print(f"\n尝试创建同名知识库: {kb}")
+ r = requests.post(url, json={"knowledge_base_name": kb})
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 404
+ assert data["msg"] == f"已存在同名知识库 {kb}"
+
+
+def test_list_kbs(api="/knowledge_base/list_knowledge_bases"):
+ url = api_base_url + api
+ print("\n获取知识库列表:")
+ r = requests.get(url)
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert isinstance(data["data"], list) and len(data["data"]) > 0
+ assert kb in data["data"]
+
+
+def test_upload_doc(api="/knowledge_base/upload_doc"):
+ url = api_base_url + api
+ for name, path in test_files.items():
+ print(f"\n上传知识文件: {name}")
+ data = {"knowledge_base_name": kb, "override": True}
+ files = {"file": (name, open(path, "rb"))}
+ r = requests.post(url, data=data, files=files)
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert data["msg"] == f"成功上传文件 {name}"
+
+ for name, path in test_files.items():
+ print(f"\n尝试重新上传知识文件: {name}, 不覆盖")
+ data = {"knowledge_base_name": kb, "override": False}
+ files = {"file": (name, open(path, "rb"))}
+ r = requests.post(url, data=data, files=files)
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 404
+ assert data["msg"] == f"文件 {name} 已存在。"
+
+ for name, path in test_files.items():
+ print(f"\n尝试重新上传知识文件: {name}, 覆盖")
+ data = {"knowledge_base_name": kb, "override": True}
+ files = {"file": (name, open(path, "rb"))}
+ r = requests.post(url, data=data, files=files)
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert data["msg"] == f"成功上传文件 {name}"
+
+
+def test_list_docs(api="/knowledge_base/list_docs"):
+ url = api_base_url + api
+ print("\n获取知识库中文件列表:")
+ r = requests.get(url, params={"knowledge_base_name": kb})
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert isinstance(data["data"], list)
+ for name in test_files:
+ assert name in data["data"]
+
+
+def test_search_docs(api="/knowledge_base/search_docs"):
+ url = api_base_url + api
+ query = "介绍一下langchain-chatchat项目"
+ print("\n检索知识库:")
+ print(query)
+ r = requests.post(url, json={"knowledge_base_name": kb, "query": query})
+ data = r.json()
+ pprint(data)
+ assert isinstance(data, list) and len(data) == VECTOR_SEARCH_TOP_K
+
+
+def test_update_doc(api="/knowledge_base/update_doc"):
+ url = api_base_url + api
+ for name, path in test_files.items():
+ print(f"\n更新知识文件: {name}")
+ r = requests.post(url, json={"knowledge_base_name": kb, "file_name": name})
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert data["msg"] == f"成功更新文件 {name}"
+
+
+def test_delete_doc(api="/knowledge_base/delete_doc"):
+ url = api_base_url + api
+ for name, path in test_files.items():
+ print(f"\n删除知识文件: {name}")
+ r = requests.post(url, json={"knowledge_base_name": kb, "doc_name": name})
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert data["msg"] == f"{name} 文件删除成功"
+
+ url = api_base_url + "/knowledge_base/search_docs"
+ query = "介绍一下langchain-chatchat项目"
+ print("\n尝试检索删除后的检索知识库:")
+ print(query)
+ r = requests.post(url, json={"knowledge_base_name": kb, "query": query})
+ data = r.json()
+ pprint(data)
+ assert isinstance(data, list) and len(data) == 0
+
+
+def test_recreate_vs(api="/knowledge_base/recreate_vector_store"):
+ url = api_base_url + api
+ print("\n重建知识库:")
+ r = requests.post(url, json={"knowledge_base_name": kb}, stream=True)
+ for chunk in r.iter_content(None):
+ data = json.loads(chunk)
+ assert isinstance(data, dict)
+ assert data["code"] == 200
+ print(data["msg"])
+
+ url = api_base_url + "/knowledge_base/search_docs"
+ query = "本项目支持哪些文件格式?"
+ print("\n尝试检索重建后的检索知识库:")
+ print(query)
+ r = requests.post(url, json={"knowledge_base_name": kb, "query": query})
+ data = r.json()
+ pprint(data)
+ assert isinstance(data, list) and len(data) == VECTOR_SEARCH_TOP_K
+
+
+def test_delete_kb_after(api="/knowledge_base/delete_knowledge_base"):
+ url = api_base_url + api
+ print("\n删除知识库")
+ r = requests.post(url, json=kb)
+ data = r.json()
+ pprint(data)
+
+ # check kb not exists anymore
+ url = api_base_url + "/knowledge_base/list_knowledge_bases"
+ print("\n获取知识库列表:")
+ r = requests.get(url)
+ data = r.json()
+ pprint(data)
+ assert data["code"] == 200
+ assert isinstance(data["data"], list) and len(data["data"]) > 0
+ assert kb not in data["data"]
diff --git a/tests/api/test_stream_chat_api.py b/tests/api/test_stream_chat_api.py
new file mode 100644
index 0000000..56d3237
--- /dev/null
+++ b/tests/api/test_stream_chat_api.py
@@ -0,0 +1,108 @@
+import requests
+import json
+import sys
+from pathlib import Path
+
+sys.path.append(str(Path(__file__).parent.parent.parent))
+from configs.server_config import API_SERVER, api_address
+
+from pprint import pprint
+
+
+api_base_url = api_address()
+
+
+def dump_input(d, title):
+ print("\n")
+ print("=" * 30 + title + " input " + "="*30)
+ pprint(d)
+
+
+def dump_output(r, title):
+ print("\n")
+ print("=" * 30 + title + " output" + "="*30)
+ for line in r.iter_content(None, decode_unicode=True):
+ print(line, end="", flush=True)
+
+
+headers = {
+ 'accept': 'application/json',
+ 'Content-Type': 'application/json',
+}
+
+data = {
+ "query": "请用100字左右的文字介绍自己",
+ "history": [
+ {
+ "role": "user",
+ "content": "你好"
+ },
+ {
+ "role": "assistant",
+ "content": "你好,我是 ChatGLM"
+ }
+ ],
+ "stream": True
+}
+
+
+
+def test_chat_fastchat(api="/chat/fastchat"):
+ url = f"{api_base_url}{api}"
+ data2 = {
+ "stream": True,
+ "messages": data["history"] + [{"role": "user", "content": "推荐一部科幻电影"}]
+ }
+ dump_input(data2, api)
+ response = requests.post(url, headers=headers, json=data2, stream=True)
+ dump_output(response, api)
+ assert response.status_code == 200
+
+
+def test_chat_chat(api="/chat/chat"):
+ url = f"{api_base_url}{api}"
+ dump_input(data, api)
+ response = requests.post(url, headers=headers, json=data, stream=True)
+ dump_output(response, api)
+ assert response.status_code == 200
+
+
+def test_knowledge_chat(api="/chat/knowledge_base_chat"):
+ url = f"{api_base_url}{api}"
+ data = {
+ "query": "如何提问以获得高质量答案",
+ "knowledge_base_name": "samples",
+ "history": [
+ {
+ "role": "user",
+ "content": "你好"
+ },
+ {
+ "role": "assistant",
+ "content": "你好,我是 ChatGLM"
+ }
+ ],
+ "stream": True
+ }
+ dump_input(data, api)
+ response = requests.post(url, headers=headers, json=data, stream=True)
+ print("\n")
+ print("=" * 30 + api + " output" + "="*30)
+ first = True
+ for line in response.iter_content(None, decode_unicode=True):
+ data = json.loads(line)
+ if first:
+ for doc in data["docs"]:
+ print(doc)
+ first = False
+ print(data["answer"], end="", flush=True)
+ assert response.status_code == 200
+
+
+def test_search_engine_chat(api="/chat/search_engine_chat"):
+ url = f"{api_base_url}{api}"
+ for se in ["bing", "duckduckgo"]:
+ dump_input(data, api)
+ response = requests.post(url, json=data, stream=True)
+ dump_output(response, api)
+ assert response.status_code == 200
diff --git a/webui.py b/webui.py
index 99db3f6..58fc0e3 100644
--- a/webui.py
+++ b/webui.py
@@ -9,6 +9,7 @@ from webui_pages.utils import *
from streamlit_option_menu import option_menu
from webui_pages import *
import os
+from configs import VERSION
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False)
@@ -17,6 +18,11 @@ if __name__ == "__main__":
"Langchain-Chatchat WebUI",
os.path.join("img", "chatchat_icon_blue_square_v2.png"),
initial_sidebar_state="expanded",
+ menu_items={
+ 'Get Help': 'https://github.com/chatchat-space/Langchain-Chatchat',
+ 'Report a bug': "https://github.com/chatchat-space/Langchain-Chatchat/issues",
+ 'About': f"""欢迎使用 Langchain-Chatchat WebUI {VERSION}!"""
+ }
)
if not chat_box.chat_inited:
@@ -35,7 +41,7 @@ if __name__ == "__main__":
"func": knowledge_base_page,
},
}
-
+
with st.sidebar:
st.image(
os.path.join(
@@ -44,6 +50,10 @@ if __name__ == "__main__":
),
use_column_width=True
)
+ st.caption(
+ f"""当前版本:{VERSION}
""",
+ unsafe_allow_html=True,
+ )
options = list(pages)
icons = [x["icon"] for x in pages.values()]
diff --git a/webui_pages/knowledge_base/knowledge_base.py b/webui_pages/knowledge_base/knowledge_base.py
index f059475..4351e95 100644
--- a/webui_pages/knowledge_base/knowledge_base.py
+++ b/webui_pages/knowledge_base/knowledge_base.py
@@ -118,7 +118,7 @@ def knowledge_base_page(api: ApiRequest):
vector_store_type=vs_type,
embed_model=embed_model,
)
- st.toast(ret["msg"])
+ st.toast(ret.get("msg", " "))
st.session_state["selected_kb_name"] = kb_name
st.experimental_rerun()
@@ -138,12 +138,14 @@ def knowledge_base_page(api: ApiRequest):
# use_container_width=True,
disabled=len(files) == 0,
):
- for f in files:
- ret = api.upload_kb_doc(f, kb)
- if ret["code"] == 200:
- st.toast(ret["msg"], icon="✔")
- else:
- st.toast(ret["msg"], icon="✖")
+ data = [{"file": f, "knowledge_base_name": kb, "not_refresh_vs_cache": True} for f in files]
+ data[-1]["not_refresh_vs_cache"]=False
+ for k in data:
+ ret = api.upload_kb_doc(**k)
+ if msg := check_success_msg(ret):
+ st.toast(msg, icon="✔")
+ elif msg := check_error_msg(ret):
+ st.toast(msg, icon="✖")
st.session_state.files = []
st.divider()
@@ -235,7 +237,7 @@ def knowledge_base_page(api: ApiRequest):
):
for row in selected_rows:
ret = api.delete_kb_doc(kb, row["file_name"], True)
- st.toast(ret["msg"])
+ st.toast(ret.get("msg", " "))
st.experimental_rerun()
st.divider()
@@ -249,12 +251,14 @@ def knowledge_base_page(api: ApiRequest):
use_container_width=True,
type="primary",
):
- with st.spinner("向量库重构中"):
+ with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
empty = st.empty()
empty.progress(0.0, "")
for d in api.recreate_vector_store(kb):
- print(d)
- empty.progress(d["finished"] / d["total"], f"正在处理: {d['doc']}")
+ if msg := check_error_msg(d):
+ st.toast(msg)
+ else:
+ empty.progress(d["finished"] / d["total"], f"正在处理: {d['doc']}")
st.experimental_rerun()
if cols[2].button(
@@ -262,6 +266,6 @@ def knowledge_base_page(api: ApiRequest):
use_container_width=True,
):
ret = api.delete_knowledge_base(kb)
- st.toast(ret["msg"])
+ st.toast(ret.get("msg", " "))
time.sleep(1)
st.experimental_rerun()
diff --git a/webui_pages/utils.py b/webui_pages/utils.py
index 3e67ed7..c666d45 100644
--- a/webui_pages/utils.py
+++ b/webui_pages/utils.py
@@ -229,18 +229,18 @@ class ApiRequest:
elif chunk.strip():
yield chunk
except httpx.ConnectError as e:
- msg = f"无法连接API服务器,请确认已执行python server\\api.py"
+ msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。"
logger.error(msg)
logger.error(e)
- yield {"code": 500, "errorMsg": msg}
+ yield {"code": 500, "msg": msg}
except httpx.ReadTimeout as e:
msg = f"API通信超时,请确认已启动FastChat与API服务(详见RADME '5. 启动 API 服务或 Web UI')"
logger.error(msg)
logger.error(e)
- yield {"code": 500, "errorMsg": msg}
+ yield {"code": 500, "msg": msg}
except Exception as e:
logger.error(e)
- yield {"code": 500, "errorMsg": str(e)}
+ yield {"code": 500, "msg": str(e)}
# 对话相关操作
@@ -394,7 +394,7 @@ class ApiRequest:
return response.json()
except Exception as e:
logger.error(e)
- return {"code": 500, "errorMsg": errorMsg or str(e)}
+ return {"code": 500, "msg": errorMsg or str(e)}
def list_knowledge_bases(
self,
@@ -496,6 +496,7 @@ class ApiRequest:
knowledge_base_name: str,
filename: str = None,
override: bool = False,
+ not_refresh_vs_cache: bool = False,
no_remote_api: bool = None,
):
'''
@@ -529,7 +530,11 @@ class ApiRequest:
else:
response = self.post(
"/knowledge_base/upload_doc",
- data={"knowledge_base_name": knowledge_base_name, "override": override},
+ data={
+ "knowledge_base_name": knowledge_base_name,
+ "override": override,
+ "not_refresh_vs_cache": not_refresh_vs_cache,
+ },
files={"file": (filename, file)},
)
return self._check_httpx_json_response(response)
@@ -539,6 +544,7 @@ class ApiRequest:
knowledge_base_name: str,
doc_name: str,
delete_content: bool = False,
+ not_refresh_vs_cache: bool = False,
no_remote_api: bool = None,
):
'''
@@ -551,6 +557,7 @@ class ApiRequest:
"knowledge_base_name": knowledge_base_name,
"doc_name": doc_name,
"delete_content": delete_content,
+ "not_refresh_vs_cache": not_refresh_vs_cache,
}
if no_remote_api:
@@ -568,6 +575,7 @@ class ApiRequest:
self,
knowledge_base_name: str,
file_name: str,
+ not_refresh_vs_cache: bool = False,
no_remote_api: bool = None,
):
'''
@@ -583,7 +591,11 @@ class ApiRequest:
else:
response = self.post(
"/knowledge_base/update_doc",
- json={"knowledge_base_name": knowledge_base_name, "file_name": file_name},
+ json={
+ "knowledge_base_name": knowledge_base_name,
+ "file_name": file_name,
+ "not_refresh_vs_cache": not_refresh_vs_cache,
+ },
)
return self._check_httpx_json_response(response)
@@ -617,7 +629,7 @@ class ApiRequest:
"/knowledge_base/recreate_vector_store",
json=data,
stream=True,
- timeout=False,
+ timeout=None,
)
return self._httpx_stream2generator(response, as_json=True)
@@ -626,7 +638,22 @@ def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str:
'''
return error message if error occured when requests API
'''
- if isinstance(data, dict) and key in data:
+ if isinstance(data, dict):
+ if key in data:
+ return data[key]
+ if "code" in data and data["code"] != 200:
+ return data["msg"]
+ return ""
+
+
+def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str:
+ '''
+ return error message if error occured when requests API
+ '''
+ if (isinstance(data, dict)
+ and key in data
+ and "code" in data
+ and data["code"] == 200):
return data[key]
return ""