1.增加对llama-cpp模型的支持;2.增加对bloom/chatyuan/baichuan模型的支持;3. 修复多GPU部署的bug;4. 修复了moss_llm.py的bug;5. 增加对openai支持(没有api,未测试);6. 支持在多卡情况自定义设备GPU (#664)
* 修复 bing_search.py的typo;更新model_config.py中Bing Subscription Key申请方式及注意事项 * 更新FAQ,增加了[Errno 110] Connection timed out的原因与解决方案 * 修改loader.py中load_in_8bit失败的原因和详细解决方案 * update loader.py * stream_chat_bing * 修改stream_chat的接口,在请求体中选择knowledge_base_id;增加stream_chat_bing接口 * 优化cli_demo.py的逻辑:支持 输入提示;多输入;重新输入 * update cli_demo.py * add bloom-3b,bloom-7b1,ggml-vicuna-13b-1.1 * 1.增加对llama-cpp模型的支持;2.增加对bloom模型的支持;3. 修复多GPU部署的bug;4. 增加对openai支持(没有api,未测试);5.增加了llama-cpp模型部署的说明 * llama模型兼容性说明 * modified: ../configs/model_config.py modified: ../docs/INSTALL.md 在install.md里增加对llama-cpp模型调用的说明 * 修改llama_llm.py以适应llama-cpp模型 * 完成llama-cpp模型的支持; * make fastchat and openapi compatiable * 1. 修复/增加对chatyuan,bloom,baichuan-7等模型的支持;2. 修复了moss_llm.py的bug; * set default model be chatglm-6b * 在多卡情况下也支持自定义GPU设备 --------- Co-authored-by: imClumsyPanda <littlepanda0716@gmail.com>
This commit is contained in:
parent
10abb8d781
commit
a5ca4bf26a
|
|
@ -200,7 +200,6 @@ class LocalDocQA:
|
|||
return vs_path, loaded_files
|
||||
else:
|
||||
logger.info("文件均未成功加载,请检查依赖包或替换为其他文件再次上传。")
|
||||
|
||||
return None, loaded_files
|
||||
|
||||
def one_knowledge_add(self, vs_path, one_title, one_conent, one_content_segmentation, sentence_size):
|
||||
|
|
|
|||
|
|
@ -69,7 +69,7 @@ llm_model_dict = {
|
|||
"name": "chatyuan",
|
||||
"pretrained_model_name": "ClueAI/ChatYuan-large-v2",
|
||||
"local_model_path": None,
|
||||
"provides": None
|
||||
"provides": "MOSSLLM"
|
||||
},
|
||||
"moss": {
|
||||
"name": "moss",
|
||||
|
|
@ -82,6 +82,46 @@ llm_model_dict = {
|
|||
"pretrained_model_name": "vicuna-13b-hf",
|
||||
"local_model_path": None,
|
||||
"provides": "LLamaLLM"
|
||||
},
|
||||
# 直接调用返回requests.exceptions.ConnectionError错误,需要通过huggingface_hub包里的snapshot_download函数
|
||||
# 下载模型,如果snapshot_download还是返回网络错误,多试几次,一般是可以的,
|
||||
# 如果仍然不行,则应该是网络加了防火墙(在服务器上这种情况比较常见),基本只能从别的设备上下载,
|
||||
# 然后转移到目标设备了.
|
||||
"bloomz-7b1":{
|
||||
"name" : "bloomz-7b1",
|
||||
"pretrained_model_name": "bigscience/bloomz-7b1",
|
||||
"local_model_path": None,
|
||||
"provides": "MOSSLLM"
|
||||
|
||||
},
|
||||
# 实测加载bigscience/bloom-3b需要170秒左右,暂不清楚为什么这么慢
|
||||
# 应与它要加载专有token有关
|
||||
"bloom-3b":{
|
||||
"name" : "bloom-3b",
|
||||
"pretrained_model_name": "bigscience/bloom-3b",
|
||||
"local_model_path": None,
|
||||
"provides": "MOSSLLM"
|
||||
|
||||
},
|
||||
"baichuan-7b":{
|
||||
"name":"baichuan-7b",
|
||||
"pretrained_model_name":"baichuan-inc/baichuan-7B",
|
||||
"local_model_path":None,
|
||||
"provides":"MOSSLLM"
|
||||
},
|
||||
# llama-cpp模型的兼容性问题参考https://github.com/abetlen/llama-cpp-python/issues/204
|
||||
"ggml-vicuna-13b-1.1-q5":{
|
||||
"name": "ggml-vicuna-13b-1.1-q5",
|
||||
"pretrained_model_name": "lmsys/vicuna-13b-delta-v1.1",
|
||||
# 这里需要下载好模型的路径,如果下载模型是默认路径则它会下载到用户工作区的
|
||||
# /.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/
|
||||
# 还有就是由于本项目加载模型的方式设置的比较严格,下载完成后仍需手动修改模型的文件名
|
||||
# 将其设置为与Huggface Hub一致的文件名
|
||||
# 此外不同时期的ggml格式并不兼容,因此不同时期的ggml需要安装不同的llama-cpp-python库,且实测pip install 不好使
|
||||
# 需要手动从https://github.com/abetlen/llama-cpp-python/releases/tag/下载对应的wheel安装
|
||||
# 实测v0.1.63与本模型的vicuna/ggml-vicuna-13b-1.1/ggml-vic13b-q5_1.bin可以兼容
|
||||
"local_model_path":f'''{"/".join(os.path.abspath(__file__).split("/")[:3])}/.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/blobs/''',
|
||||
"provides": "LLamaLLM"
|
||||
},
|
||||
|
||||
# 通过 fastchat 调用的模型请参考如下格式
|
||||
|
|
@ -90,7 +130,8 @@ llm_model_dict = {
|
|||
"pretrained_model_name": "chatglm-6b",
|
||||
"local_model_path": None,
|
||||
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
|
||||
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_key": "EMPTY"
|
||||
},
|
||||
"fastchat-chatglm2-6b": {
|
||||
"name": "chatglm2-6b", # "name"修改为fastchat服务中的"model_name"
|
||||
|
|
@ -106,8 +147,18 @@ llm_model_dict = {
|
|||
"pretrained_model_name": "vicuna-13b-hf",
|
||||
"local_model_path": None,
|
||||
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
|
||||
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_key": "EMPTY"
|
||||
},
|
||||
"openai-chatgpt-3.5":{
|
||||
"name": "gpt-3.5-turbo",
|
||||
"pretrained_model_name": "gpt-3.5-turbo",
|
||||
"provides":"FastChatOpenAILLM",
|
||||
"local_model_path": None,
|
||||
"api_base_url": "https://api.openapi.com/v1",
|
||||
"api_key": ""
|
||||
},
|
||||
|
||||
}
|
||||
|
||||
# LLM 名称
|
||||
|
|
|
|||
|
|
@ -44,4 +44,12 @@ $ pip install -r requirements.txt
|
|||
$ python loader/image_loader.py
|
||||
|
||||
```
|
||||
|
||||
注:使用 `langchain.document_loaders.UnstructuredFileLoader` 进行非结构化文件接入时,可能需要依据文档进行其他依赖包的安装,请参考 [langchain 文档](https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html)。
|
||||
|
||||
## llama-cpp模型调用的说明
|
||||
|
||||
1. 首先从huggingface hub中下载对应的模型,如https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/的[ggml-vic13b-q5_1.bin](https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-q5_1.bin),建议使用huggingface_hub库的snapshot_download下载。
|
||||
2. 将下载的模型重命名。通过huggingface_hub下载的模型会被重命名为随机序列,因此需要重命名为原始文件名,如[ggml-vic13b-q5_1.bin](https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-q5_1.bin)。
|
||||
3. 基于下载模型的ggml的加载时间,推测对应的llama-cpp版本,下载对应的llama-cpp-python库的wheel文件,实测[ggml-vic13b-q5_1.bin](https://huggingface.co/vicuna/ggml-vicuna-13b-1.1/blob/main/ggml-vic13b-q5_1.bin)与llama-cpp-python库兼容,然后手动安装wheel文件。
|
||||
4. 将下载的模型信息写入configs/model_config.py文件里 `llm_model_dict`中,注意保证参数的兼容性,一些参数组合可能会报错.
|
||||
|
|
|
|||
|
|
@ -23,6 +23,7 @@ def _build_message_template() -> Dict[str, str]:
|
|||
|
||||
|
||||
class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
|
||||
|
||||
api_base_url: str = "http://localhost:8000/v1"
|
||||
model_name: str = "chatglm-6b"
|
||||
max_token: int = 10000
|
||||
|
|
@ -31,8 +32,14 @@ class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
|
|||
checkPoint: LoaderCheckPoint = None
|
||||
history = []
|
||||
history_len: int = 10
|
||||
api_key: str = ""
|
||||
|
||||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||||
def __init__(self,
|
||||
checkPoint: LoaderCheckPoint = None,
|
||||
# api_base_url:str="http://localhost:8000/v1",
|
||||
# model_name:str="chatglm-6b",
|
||||
# api_key:str=""
|
||||
):
|
||||
super().__init__()
|
||||
self.checkPoint = checkPoint
|
||||
|
||||
|
|
@ -60,7 +67,7 @@ class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
|
|||
return self.api_base_url
|
||||
|
||||
def set_api_key(self, api_key: str):
|
||||
pass
|
||||
self.api_key = api_key
|
||||
|
||||
def set_api_base_url(self, api_base_url: str):
|
||||
self.api_base_url = api_base_url
|
||||
|
|
@ -73,7 +80,8 @@ class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
|
|||
try:
|
||||
import openai
|
||||
# Not support yet
|
||||
openai.api_key = "EMPTY"
|
||||
# openai.api_key = "EMPTY"
|
||||
openai.key = self.api_key
|
||||
openai.api_base = self.api_base_url
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
|
|
@ -116,7 +124,8 @@ class FastChatOpenAILLM(RemoteRpcModel, LLM, ABC):
|
|||
try:
|
||||
import openai
|
||||
# Not support yet
|
||||
openai.api_key = "EMPTY"
|
||||
# openai.api_key = "EMPTY"
|
||||
openai.api_key = self.api_key
|
||||
openai.api_base = self.api_base_url
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
|
|
|
|||
|
|
@ -6,14 +6,17 @@ import torch
|
|||
import transformers
|
||||
from transformers.generation.logits_process import LogitsProcessor
|
||||
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
|
||||
from typing import Optional, List, Dict, Any
|
||||
from typing import Optional, List, Dict, Any,Union
|
||||
from models.loader import LoaderCheckPoint
|
||||
from models.base import (BaseAnswer,
|
||||
AnswerResult)
|
||||
|
||||
|
||||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
def __call__(self, input_ids: Union[torch.LongTensor,list], scores: Union[torch.FloatTensor,list]) -> torch.FloatTensor:
|
||||
# llama-cpp模型返回的是list,为兼容性考虑,需要判断input_ids和scores的类型,将list转换为torch.Tensor
|
||||
input_ids = torch.tensor(input_ids) if isinstance(input_ids,list) else input_ids
|
||||
scores = torch.tensor(scores) if isinstance(scores,list) else scores
|
||||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||||
scores.zero_()
|
||||
scores[..., 5] = 5e4
|
||||
|
|
@ -163,8 +166,21 @@ class LLamaLLM(BaseAnswer, LLM, ABC):
|
|||
self.stopping_criteria = transformers.StoppingCriteriaList()
|
||||
# 观测输出
|
||||
gen_kwargs.update({'stopping_criteria': self.stopping_criteria})
|
||||
# llama-cpp模型的参数与transformers的参数字段有较大差异,直接调用会返回不支持的字段错误
|
||||
# 因此需要先判断模型是否是llama-cpp模型,然后取gen_kwargs与模型generate方法字段的交集
|
||||
# 仅将交集字段传给模型以保证兼容性
|
||||
# todo llama-cpp模型在本框架下兼容性较差,后续可以考虑重写一个llama_cpp_llm.py模块
|
||||
if "llama_cpp" in self.checkPoint.model.__str__():
|
||||
import inspect
|
||||
|
||||
output_ids = self.checkPoint.model.generate(**gen_kwargs)
|
||||
common_kwargs_keys = set(inspect.getfullargspec(self.checkPoint.model.generate).args)&set(gen_kwargs.keys())
|
||||
common_kwargs = {key:gen_kwargs[key] for key in common_kwargs_keys}
|
||||
#? llama-cpp模型的generate方法似乎只接受.cpu类型的输入,响应很慢,慢到哭泣
|
||||
#?为什么会不支持GPU呢,不应该啊?
|
||||
output_ids = torch.tensor([list(self.checkPoint.model.generate(input_id_i.cpu(),**common_kwargs)) for input_id_i in input_ids])
|
||||
|
||||
else:
|
||||
output_ids = self.checkPoint.model.generate(**gen_kwargs)
|
||||
new_tokens = len(output_ids[0]) - len(input_ids[0])
|
||||
reply = self.decode(output_ids[0][-new_tokens:])
|
||||
print(f"response:{reply}")
|
||||
|
|
|
|||
|
|
@ -67,9 +67,11 @@ class LoaderCheckPoint:
|
|||
self.load_in_8bit = params.get('load_in_8bit', False)
|
||||
self.bf16 = params.get('bf16', False)
|
||||
|
||||
|
||||
def _load_model_config(self, model_name):
|
||||
|
||||
if self.model_path:
|
||||
self.model_path = re.sub("\s","",self.model_path)
|
||||
checkpoint = Path(f'{self.model_path}')
|
||||
else:
|
||||
if not self.no_remote_model:
|
||||
|
|
@ -78,10 +80,12 @@ class LoaderCheckPoint:
|
|||
raise ValueError(
|
||||
"本地模型local_model_path未配置路径"
|
||||
)
|
||||
|
||||
model_config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=True)
|
||||
|
||||
return model_config
|
||||
try:
|
||||
model_config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=True)
|
||||
return model_config
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return checkpoint
|
||||
|
||||
def _load_model(self, model_name):
|
||||
"""
|
||||
|
|
@ -93,6 +97,7 @@ class LoaderCheckPoint:
|
|||
t0 = time.time()
|
||||
|
||||
if self.model_path:
|
||||
self.model_path = re.sub("\s","",self.model_path)
|
||||
checkpoint = Path(f'{self.model_path}')
|
||||
else:
|
||||
if not self.no_remote_model:
|
||||
|
|
@ -103,7 +108,7 @@ class LoaderCheckPoint:
|
|||
)
|
||||
|
||||
self.is_llamacpp = len(list(Path(f'{checkpoint}').glob('ggml*.bin'))) > 0
|
||||
if 'chatglm' in model_name.lower():
|
||||
if 'chatglm' in model_name.lower() or "chatyuan" in model_name.lower():
|
||||
LoaderClass = AutoModel
|
||||
else:
|
||||
LoaderClass = AutoModelForCausalLM
|
||||
|
|
@ -126,8 +131,14 @@ class LoaderCheckPoint:
|
|||
.half()
|
||||
.cuda()
|
||||
)
|
||||
# 支持自定义cuda设备
|
||||
elif ":" in self.llm_device:
|
||||
model = LoaderClass.from_pretrained(checkpoint,
|
||||
config=self.model_config,
|
||||
torch_dtype=torch.bfloat16 if self.bf16 else torch.float16,
|
||||
trust_remote_code=True).half().to(self.llm_device)
|
||||
else:
|
||||
from accelerate import dispatch_model
|
||||
from accelerate import dispatch_model,infer_auto_device_map
|
||||
|
||||
model = LoaderClass.from_pretrained(checkpoint,
|
||||
config=self.model_config,
|
||||
|
|
@ -140,7 +151,13 @@ class LoaderCheckPoint:
|
|||
elif 'moss' in model_name.lower():
|
||||
self.device_map = self.moss_auto_configure_device_map(num_gpus, model_name)
|
||||
else:
|
||||
self.device_map = self.chatglm_auto_configure_device_map(num_gpus)
|
||||
# 对于chaglm和moss意外的模型应使用自动指定,而非调用chatglm的配置方式
|
||||
# 其他模型定义的层类几乎不可能与chatglm和moss一致,使用chatglm_auto_configure_device_map
|
||||
# 百分百会报错,使用infer_auto_device_map虽然可能导致负载不均衡,但至少不会报错
|
||||
# 实测在bloom模型上如此
|
||||
self.device_map = infer_auto_device_map(model,
|
||||
dtype=torch.int8,
|
||||
no_split_module_classes=model._no_split_modules)
|
||||
|
||||
model = dispatch_model(model, device_map=self.device_map)
|
||||
else:
|
||||
|
|
@ -156,7 +173,7 @@ class LoaderCheckPoint:
|
|||
elif self.is_llamacpp:
|
||||
|
||||
try:
|
||||
from models.extensions.llamacpp_model_alternative import LlamaCppModel
|
||||
from llama_cpp import Llama
|
||||
|
||||
except ImportError as exc:
|
||||
raise ValueError(
|
||||
|
|
@ -167,7 +184,16 @@ class LoaderCheckPoint:
|
|||
model_file = list(checkpoint.glob('ggml*.bin'))[0]
|
||||
print(f"llama.cpp weights detected: {model_file}\n")
|
||||
|
||||
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
|
||||
model = Llama(model_path=model_file._str)
|
||||
|
||||
# 实测llama-cpp-vicuna13b-q5_1的AutoTokenizer加载tokenizer的速度极慢,应存在优化空间
|
||||
# 但需要对huggingface的AutoTokenizer进行优化
|
||||
|
||||
# tokenizer = model.tokenizer
|
||||
# todo 此处调用AutoTokenizer的tokenizer,但后续可以测试自带tokenizer是不是兼容
|
||||
#* -> 自带的tokenizer不与transoformers的tokenizer兼容,无法使用
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
||||
return model, tokenizer
|
||||
|
||||
elif self.load_in_8bit:
|
||||
|
|
@ -396,7 +422,7 @@ class LoaderCheckPoint:
|
|||
print(
|
||||
"如果您使用的是 macOS 建议将 pytorch 版本升级至 2.0.0 或更高版本,以支持及时清理 torch 产生的内存占用。")
|
||||
elif torch.has_cuda:
|
||||
device_id = "0" if torch.cuda.is_available() else None
|
||||
device_id = "0" if torch.cuda.is_available() and (":" not in self.llm_device) else None
|
||||
CUDA_DEVICE = f"{self.llm_device}:{device_id}" if device_id else self.llm_device
|
||||
with torch.cuda.device(CUDA_DEVICE):
|
||||
torch.cuda.empty_cache()
|
||||
|
|
@ -443,5 +469,6 @@ class LoaderCheckPoint:
|
|||
self.model.transformer.prefix_encoder.float()
|
||||
except Exception as e:
|
||||
print("加载PrefixEncoder模型参数失败")
|
||||
|
||||
self.model = self.model.eval()
|
||||
# llama-cpp模型(至少vicuna-13b)的eval方法就是自身,其没有eval方法
|
||||
if not self.is_llamacpp:
|
||||
self.model = self.model.eval()
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ from models.base import (BaseAnswer,
|
|||
AnswerResult)
|
||||
|
||||
import torch
|
||||
|
||||
# todo 建议重写instruction,在该instruction下,各模型的表现比较差
|
||||
META_INSTRUCTION = \
|
||||
"""You are an AI assistant whose name is MOSS.
|
||||
- MOSS is a conversational language model that is developed by Fudan University. It is designed to be helpful, honest, and harmless.
|
||||
|
|
@ -20,7 +20,7 @@ META_INSTRUCTION = \
|
|||
Capabilities and tools that MOSS can possess.
|
||||
"""
|
||||
|
||||
|
||||
# todo 在MOSSLLM类下,各模型的响应速度很慢,后续要检查一下原因
|
||||
class MOSSLLM(BaseAnswer, LLM, ABC):
|
||||
max_token: int = 2048
|
||||
temperature: float = 0.7
|
||||
|
|
@ -42,10 +42,11 @@ class MOSSLLM(BaseAnswer, LLM, ABC):
|
|||
return self.checkPoint
|
||||
|
||||
@property
|
||||
def set_history_len(self) -> int:
|
||||
def _history_len(self) -> int:
|
||||
|
||||
return self.history_len
|
||||
|
||||
def _set_history_len(self, history_len: int) -> None:
|
||||
def set_history_len(self, history_len: int) -> None:
|
||||
self.history_len = history_len
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
|
|
@ -59,11 +60,13 @@ class MOSSLLM(BaseAnswer, LLM, ABC):
|
|||
prompt_w_history = str(history)
|
||||
prompt_w_history += '<|Human|>: ' + prompt + '<eoh>'
|
||||
else:
|
||||
prompt_w_history = META_INSTRUCTION
|
||||
prompt_w_history = META_INSTRUCTION.replace("MOSS", self.checkPoint.model_name.split("/")[-1])
|
||||
prompt_w_history += '<|Human|>: ' + prompt + '<eoh>'
|
||||
|
||||
inputs = self.checkPoint.tokenizer(prompt_w_history, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
# max_length似乎可以设的小一些,而repetion_penalty应大一些,否则chatyuan,bloom等模型为满足max会重复输出
|
||||
#
|
||||
outputs = self.checkPoint.model.generate(
|
||||
inputs.input_ids.cuda(),
|
||||
attention_mask=inputs.attention_mask.cuda(),
|
||||
|
|
|
|||
|
|
@ -44,4 +44,5 @@ def loaderLLM(llm_model: str = None, no_remote_model: bool = False, use_ptuning_
|
|||
if 'FastChatOpenAILLM' in llm_model_info["provides"]:
|
||||
modelInsLLM.set_api_base_url(llm_model_info['api_base_url'])
|
||||
modelInsLLM.call_model_name(llm_model_info['name'])
|
||||
modelInsLLM.set_api_key(llm_model_info['api_key'])
|
||||
return modelInsLLM
|
||||
|
|
|
|||
|
|
@ -23,9 +23,13 @@ openai
|
|||
#accelerate~=0.18.0
|
||||
#peft~=0.3.0
|
||||
#bitsandbytes; platform_system != "Windows"
|
||||
#llama-cpp-python==0.1.34; platform_system != "Windows"
|
||||
#https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.34/llama_cpp_python-0.1.34-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# 要调用llama-cpp模型,如vicuma-13b量化模型需要安装llama-cpp-python库
|
||||
# but!!! 实测pip install 不好使,需要手动从ttps://github.com/abetlen/llama-cpp-python/releases/下载
|
||||
# 而且注意不同时期的ggml格式并不!兼!容!!!因此需要安装的llama-cpp-python版本也不一致,需要手动测试才能确定
|
||||
# 实测ggml-vicuna-13b-1.1在llama-cpp-python 0.1.63上可正常兼容
|
||||
# 不过!!!本项目模型加载的方式控制的比较严格,与llama-cpp-python的兼容性较差,很多参数设定不能使用,
|
||||
# 建议如非必要还是不要使用llama-cpp
|
||||
torch~=2.0.0
|
||||
pydantic~=1.10.7
|
||||
starlette~=0.26.1
|
||||
|
|
|
|||
Loading…
Reference in New Issue