Merge remote-tracking branch 'origin/dev' into dev

This commit is contained in:
zqt 2023-09-01 18:10:32 +08:00
commit ab4c8d2e5d
18 changed files with 207 additions and 56 deletions

2
.gitignore vendored
View File

@ -3,7 +3,7 @@
logs
.idea/
__pycache__/
knowledge_base/
/knowledge_base/
configs/*.py
.vscode/
.pytest_cache/

View File

@ -1,6 +1,5 @@
import os
import logging
import torch
# 日志格式
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
@ -32,8 +31,8 @@ embedding_model_dict = {
# 选用的 Embedding 名称
EMBEDDING_MODEL = "m3e-base"
# Embedding 模型运行设备
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
EMBEDDING_DEVICE = "auto"
llm_model_dict = {
@ -77,15 +76,14 @@ llm_model_dict = {
},
}
# LLM 名称
LLM_MODEL = "chatglm2-6b"
# 历史对话轮数
HISTORY_LEN = 3
# LLM 运行设备
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# LLM 运行设备。可选项同Embedding 运行设备。
LLM_DEVICE = "auto"
# 日志存储路径
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
@ -167,4 +165,4 @@ BING_SUBSCRIPTION_KEY = ""
# 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断判断哪些文本为标题并在metadata中进行标记
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
ZH_TITLE_ENHANCE = False
ZH_TITLE_ENHANCE = False

View File

@ -0,0 +1,2 @@
from .mypdfloader import RapidOCRPDFLoader
from .myimgloader import RapidOCRLoader

View File

@ -0,0 +1,25 @@
from typing import List
from langchain.document_loaders.unstructured import UnstructuredFileLoader
class RapidOCRLoader(UnstructuredFileLoader):
def _get_elements(self) -> List:
def img2text(filepath):
from rapidocr_onnxruntime import RapidOCR
resp = ""
ocr = RapidOCR()
result, _ = ocr(filepath)
if result:
ocr_result = [line[1] for line in result]
resp += "\n".join(ocr_result)
return resp
text = img2text(self.file_path)
from unstructured.partition.text import partition_text
return partition_text(text=text, **self.unstructured_kwargs)
if __name__ == "__main__":
loader = RapidOCRLoader(file_path="../tests/samples/ocr_test.jpg")
docs = loader.load()
print(docs)

View File

@ -0,0 +1,37 @@
from typing import List
from langchain.document_loaders.unstructured import UnstructuredFileLoader
class RapidOCRPDFLoader(UnstructuredFileLoader):
def _get_elements(self) -> List:
def pdf2text(filepath):
import fitz
from rapidocr_onnxruntime import RapidOCR
import numpy as np
ocr = RapidOCR()
doc = fitz.open(filepath)
resp = ""
for page in doc:
# TODO: 依据文本与图片顺序调整处理方式
text = page.get_text("")
resp += text + "\n"
img_list = page.get_images()
for img in img_list:
pix = fitz.Pixmap(doc, img[0])
img_array = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.height, pix.width, -1)
result, _ = ocr(img_array)
if result:
ocr_result = [line[1] for line in result]
resp += "\n".join(ocr_result)
return resp
text = pdf2text(self.file_path)
from unstructured.partition.text import partition_text
return partition_text(text=text, **self.unstructured_kwargs)
if __name__ == "__main__":
loader = RapidOCRPDFLoader(file_path="../tests/samples/ocr_test.pdf")
docs = loader.load()
print(docs)

View File

@ -15,6 +15,8 @@ SQLAlchemy==2.0.19
faiss-cpu
accelerate
spacy
PyMuPDF==1.22.5
rapidocr_onnxruntime>=1.3.1
# uncomment libs if you want to use corresponding vector store
# pymilvus==2.1.3 # requires milvus==2.1.3

View File

@ -16,6 +16,8 @@ faiss-cpu
nltk
accelerate
spacy
PyMuPDF==1.22.5
rapidocr_onnxruntime>=1.3.1
# uncomment libs if you want to use corresponding vector store
# pymilvus==2.1.3 # requires milvus==2.1.3

View File

@ -18,11 +18,12 @@ from server.db.repository.knowledge_file_repository import (
)
from configs.model_config import (kbs_config, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD,
EMBEDDING_DEVICE, EMBEDDING_MODEL)
EMBEDDING_MODEL)
from server.knowledge_base.utils import (
get_kb_path, get_doc_path, load_embeddings, KnowledgeFile,
list_kbs_from_folder, list_files_from_folder,
)
from server.utils import embedding_device
from typing import List, Union, Dict
@ -45,7 +46,7 @@ class KBService(ABC):
self.doc_path = get_doc_path(self.kb_name)
self.do_init()
def _load_embeddings(self, embed_device: str = EMBEDDING_DEVICE) -> Embeddings:
def _load_embeddings(self, embed_device: str = embedding_device()) -> Embeddings:
return load_embeddings(self.embed_model, embed_device)
def create_kb(self):

View File

@ -5,7 +5,6 @@ from configs.model_config import (
KB_ROOT_PATH,
CACHED_VS_NUM,
EMBEDDING_MODEL,
EMBEDDING_DEVICE,
SCORE_THRESHOLD
)
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
@ -15,7 +14,7 @@ from langchain.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from typing import List
from langchain.docstore.document import Document
from server.utils import torch_gc
from server.utils import torch_gc, embedding_device
_VECTOR_STORE_TICKS = {}
@ -25,10 +24,10 @@ _VECTOR_STORE_TICKS = {}
def load_faiss_vector_store(
knowledge_base_name: str,
embed_model: str = EMBEDDING_MODEL,
embed_device: str = EMBEDDING_DEVICE,
embed_device: str = embedding_device(),
embeddings: Embeddings = None,
tick: int = 0, # tick will be changed by upload_doc etc. and make cache refreshed.
):
) -> FAISS:
print(f"loading vector store in '{knowledge_base_name}'.")
vs_path = get_vs_path(knowledge_base_name)
if embeddings is None:
@ -74,13 +73,18 @@ class FaissKBService(KBService):
def get_kb_path(self):
return os.path.join(KB_ROOT_PATH, self.kb_name)
def load_vector_store(self):
def load_vector_store(self) -> FAISS:
return load_faiss_vector_store(
knowledge_base_name=self.kb_name,
embed_model=self.embed_model,
tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0),
)
def save_vector_store(self, vector_store: FAISS = None):
vector_store = vector_store or self.load_vector_store()
vector_store.save_local(self.vs_path)
return vector_store
def refresh_vs_cache(self):
refresh_vs_cache(self.kb_name)
@ -117,11 +121,11 @@ class FaissKBService(KBService):
if not kwargs.get("not_refresh_vs_cache"):
vector_store.save_local(self.vs_path)
self.refresh_vs_cache()
return vector_store
def do_delete_doc(self,
kb_file: KnowledgeFile,
**kwargs):
embeddings = self._load_embeddings()
vector_store = self.load_vector_store()
ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
@ -133,7 +137,7 @@ class FaissKBService(KBService):
vector_store.save_local(self.vs_path)
self.refresh_vs_cache()
return True
return vector_store
def do_clear_vs(self):
shutil.rmtree(self.vs_path)

View File

@ -6,16 +6,16 @@ from langchain.vectorstores import PGVector
from langchain.vectorstores.pgvector import DistanceStrategy
from sqlalchemy import text
from configs.model_config import EMBEDDING_DEVICE, kbs_config
from configs.model_config import kbs_config
from server.knowledge_base.kb_service.base import SupportedVSType, KBService, EmbeddingsFunAdapter, \
score_threshold_process
from server.knowledge_base.utils import load_embeddings, KnowledgeFile
from server.utils import embedding_device as get_embedding_device
class PGKBService(KBService):
pg_vector: PGVector
def _load_pg_vector(self, embedding_device: str = EMBEDDING_DEVICE, embeddings: Embeddings = None):
def _load_pg_vector(self, embedding_device: str = get_embedding_device(), embeddings: Embeddings = None):
_embeddings = embeddings
if _embeddings is None:
_embeddings = load_embeddings(self.embed_model, embedding_device)

View File

@ -69,6 +69,7 @@ def folder2db(
print(result)
if kb.vs_type() == SupportedVSType.FAISS:
kb.save_vector_store()
kb.refresh_vs_cache()
elif mode == "fill_info_only":
files = list_files_from_folder(kb_name)
@ -85,6 +86,7 @@ def folder2db(
kb.update_doc(kb_file, not_refresh_vs_cache=True)
if kb.vs_type() == SupportedVSType.FAISS:
kb.save_vector_store()
kb.refresh_vs_cache()
elif mode == "increament":
db_files = kb.list_files()
@ -102,6 +104,7 @@ def folder2db(
print(result)
if kb.vs_type() == SupportedVSType.FAISS:
kb.save_vector_store()
kb.refresh_vs_cache()
else:
print(f"unspported migrate mode: {mode}")
@ -131,7 +134,10 @@ def prune_db_files(kb_name: str):
files = list(set(files_in_db) - set(files_in_folder))
kb_files = file_to_kbfile(kb_name, files)
for kb_file in kb_files:
kb.delete_doc(kb_file)
kb.delete_doc(kb_file, not_refresh_vs_cache=True)
if kb.vs_type() == SupportedVSType.FAISS:
kb.save_vector_store()
kb.refresh_vs_cache()
return kb_files
def prune_folder_files(kb_name: str):

View File

@ -87,7 +87,8 @@ LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
"UnstructuredMarkdownLoader": ['.md'],
"CustomJSONLoader": [".json"],
"CSVLoader": [".csv"],
"PyPDFLoader": [".pdf"],
"RapidOCRPDFLoader": [".pdf"],
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
"UnstructuredFileLoader": ['.eml', '.msg', '.rst',
'.rtf', '.txt', '.xml',
'.doc', '.docx', '.epub', '.odt',
@ -196,7 +197,10 @@ class KnowledgeFile:
print(f"{self.document_loader_name} used for {self.filepath}")
try:
document_loaders_module = importlib.import_module('langchain.document_loaders')
if self.document_loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader"]:
document_loaders_module = importlib.import_module('document_loaders')
else:
document_loaders_module = importlib.import_module('langchain.document_loaders')
DocumentLoader = getattr(document_loaders_module, self.document_loader_name)
except Exception as e:
print(e)

View File

@ -4,8 +4,8 @@ import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, logger
from server.utils import MakeFastAPIOffline, set_httpx_timeout
from configs.model_config import llm_model_dict, LLM_MODEL, LOG_PATH, logger
from server.utils import MakeFastAPIOffline, set_httpx_timeout, llm_device
host_ip = "0.0.0.0"
@ -34,7 +34,7 @@ def create_model_worker_app(
worker_address=base_url.format(model_worker_port),
controller_address=base_url.format(controller_port),
model_path=llm_model_dict[LLM_MODEL].get("local_model_path"),
device=LLM_DEVICE,
device=llm_device(),
gpus=None,
max_gpu_memory="20GiB",
load_8bit=False,

View File

@ -5,8 +5,8 @@ import torch
from fastapi import FastAPI
from pathlib import Path
import asyncio
from configs.model_config import LLM_MODEL
from typing import Any, Optional
from configs.model_config import LLM_MODEL, LLM_DEVICE, EMBEDDING_DEVICE
from typing import Literal, Optional
class BaseResponse(BaseModel):
@ -201,6 +201,7 @@ def get_model_worker_config(model_name: str = LLM_MODEL) -> dict:
config = FSCHAT_MODEL_WORKERS.get("default", {}).copy()
config.update(llm_model_dict.get(model_name, {}))
config.update(FSCHAT_MODEL_WORKERS.get(model_name, {}))
config["device"] = llm_device(config.get("device"))
return config
@ -256,3 +257,28 @@ def set_httpx_timeout(timeout: float = None):
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
# 自动检查torch可用的设备。分布式部署时不运行LLM的机器上可以不装torch
def detect_device() -> Literal["cuda", "mps", "cpu"]:
try:
import torch
if torch.cuda.is_available():
return "cuda"
if torch.backends.mps.is_available():
return "mps"
except:
pass
return "cpu"
def llm_device(device: str = LLM_DEVICE) -> Literal["cuda", "mps", "cpu"]:
if device not in ["cuda", "mps", "cpu"]:
device = detect_device()
return device
def embedding_device(device: str = EMBEDDING_DEVICE) -> Literal["cuda", "mps", "cpu"]:
if device not in ["cuda", "mps", "cpu"]:
device = detect_device()
return device

View File

@ -14,12 +14,13 @@ except:
pass
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, \
from configs.model_config import EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LOG_PATH, \
logger
from configs.server_config import (WEBUI_SERVER, API_SERVER, OPEN_CROSS_DOMAIN, FSCHAT_CONTROLLER, FSCHAT_MODEL_WORKERS,
FSCHAT_OPENAI_API, )
from server.utils import (fschat_controller_address, fschat_model_worker_address,
fschat_openai_api_address, set_httpx_timeout)
fschat_openai_api_address, set_httpx_timeout,
llm_device, embedding_device, get_model_worker_config)
from server.utils import MakeFastAPIOffline, FastAPI
import argparse
from typing import Tuple, List
@ -28,10 +29,12 @@ from configs import VERSION
def create_controller_app(
dispatch_method: str,
log_level: str = "INFO",
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.controller import app, Controller
from fastchat.serve.controller import app, Controller, logger
logger.setLevel(log_level)
controller = Controller(dispatch_method)
sys.modules["fastchat.serve.controller"].controller = controller
@ -41,13 +44,14 @@ def create_controller_app(
return app
def create_model_worker_app(**kwargs) -> Tuple[argparse.ArgumentParser, FastAPI]:
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> Tuple[argparse.ArgumentParser, FastAPI]:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id, logger
import argparse
import threading
import fastchat.serve.model_worker
logger.setLevel(log_level)
# workaround to make program exit with Ctrl+c
# it should be deleted after pr is merged by fastchat
@ -136,10 +140,14 @@ def create_model_worker_app(**kwargs) -> Tuple[argparse.ArgumentParser, FastAPI]
def create_openai_api_app(
controller_address: str,
api_keys: List = [],
log_level: str = "INFO",
) -> FastAPI:
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
from fastchat.utils import build_logger
logger = build_logger("openai_api", "openai_api.log")
logger.setLevel(log_level)
app.add_middleware(
CORSMiddleware,
@ -149,6 +157,7 @@ def create_openai_api_app(
allow_headers=["*"],
)
sys.modules["fastchat.serve.openai_api_server"].logger = logger
app_settings.controller_address = controller_address
app_settings.api_keys = api_keys
@ -158,6 +167,9 @@ def create_openai_api_app(
def _set_app_seq(app: FastAPI, q: Queue, run_seq: int):
if q is None or not isinstance(run_seq, int):
return
if run_seq == 1:
@app.on_event("startup")
async def on_startup():
@ -176,15 +188,22 @@ def _set_app_seq(app: FastAPI, q: Queue, run_seq: int):
q.put(run_seq)
def run_controller(q: Queue, run_seq: int = 1):
def run_controller(q: Queue, run_seq: int = 1, log_level: str ="INFO"):
import uvicorn
import sys
app = create_controller_app(FSCHAT_CONTROLLER.get("dispatch_method"))
app = create_controller_app(
dispatch_method=FSCHAT_CONTROLLER.get("dispatch_method"),
log_level=log_level,
)
_set_app_seq(app, q, run_seq)
host = FSCHAT_CONTROLLER["host"]
port = FSCHAT_CONTROLLER["port"]
uvicorn.run(app, host=host, port=port)
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port, log_level=log_level.lower())
def run_model_worker(
@ -192,10 +211,12 @@ def run_model_worker(
controller_address: str = "",
q: Queue = None,
run_seq: int = 2,
log_level: str ="INFO",
):
import uvicorn
import sys
kwargs = FSCHAT_MODEL_WORKERS[model_name].copy()
kwargs = get_model_worker_config(model_name)
host = kwargs.pop("host")
port = kwargs.pop("port")
model_path = llm_model_dict[model_name].get("local_model_path", "")
@ -204,21 +225,28 @@ def run_model_worker(
kwargs["controller_address"] = controller_address or fschat_controller_address()
kwargs["worker_address"] = fschat_model_worker_address()
app = create_model_worker_app(**kwargs)
app = create_model_worker_app(log_level=log_level, **kwargs)
_set_app_seq(app, q, run_seq)
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port)
uvicorn.run(app, host=host, port=port, log_level=log_level.lower())
def run_openai_api(q: Queue, run_seq: int = 3):
def run_openai_api(q: Queue, run_seq: int = 3, log_level: str = "INFO"):
import uvicorn
import sys
controller_addr = fschat_controller_address()
app = create_openai_api_app(controller_addr) # todo: not support keys yet.
app = create_openai_api_app(controller_addr, log_level=log_level) # TODO: not support keys yet.
_set_app_seq(app, q, run_seq)
host = FSCHAT_OPENAI_API["host"]
port = FSCHAT_OPENAI_API["port"]
if log_level == "ERROR":
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
uvicorn.run(app, host=host, port=port)
@ -238,13 +266,15 @@ def run_api_server(q: Queue, run_seq: int = 4):
def run_webui(q: Queue, run_seq: int = 5):
host = WEBUI_SERVER["host"]
port = WEBUI_SERVER["port"]
while True:
no = q.get()
if no != run_seq - 1:
q.put(no)
else:
break
q.put(run_seq)
if q is not None and isinstance(run_seq, int):
while True:
no = q.get()
if no != run_seq - 1:
q.put(no)
else:
break
q.put(run_seq)
p = subprocess.Popen(["streamlit", "run", "webui.py",
"--server.address", host,
"--server.port", str(port)])
@ -314,11 +344,18 @@ def parse_args() -> argparse.ArgumentParser:
help="run webui.py server",
dest="webui",
)
parser.add_argument(
"-q",
"--quiet",
action="store_true",
help="减少fastchat服务log信息",
dest="quiet",
)
args = parser.parse_args()
return args, parser
def dump_server_info(after_start=False):
def dump_server_info(after_start=False, args=None):
import platform
import langchain
import fastchat
@ -331,9 +368,9 @@ def dump_server_info(after_start=False):
print(f"项目版本:{VERSION}")
print(f"langchain版本{langchain.__version__}. fastchat版本{fastchat.__version__}")
print("\n")
print(f"当前LLM模型{LLM_MODEL} @ {LLM_DEVICE}")
print(f"当前LLM模型{LLM_MODEL} @ {llm_device()}")
pprint(llm_model_dict[LLM_MODEL])
print(f"当前Embbedings模型 {EMBEDDING_MODEL} @ {EMBEDDING_DEVICE}")
print(f"当前Embbedings模型 {EMBEDDING_MODEL} @ {embedding_device()}")
if after_start:
print("\n")
print(f"服务端运行信息:")
@ -354,6 +391,7 @@ if __name__ == "__main__":
mp.set_start_method("spawn")
queue = Queue()
args, parser = parse_args()
if args.all_webui:
args.openai_api = True
args.model_worker = True
@ -372,19 +410,23 @@ if __name__ == "__main__":
args.api = False
args.webui = False
dump_server_info()
dump_server_info(args=args)
if len(sys.argv) > 1:
logger.info(f"正在启动服务:")
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
processes = {}
if args.quiet:
log_level = "ERROR"
else:
log_level = "INFO"
if args.openai_api:
process = Process(
target=run_controller,
name=f"controller({os.getpid()})",
args=(queue, len(processes) + 1),
args=(queue, len(processes) + 1, log_level),
daemon=True,
)
process.start()
@ -405,7 +447,7 @@ if __name__ == "__main__":
process = Process(
target=run_model_worker,
name=f"model_worker({os.getpid()})",
args=(args.model_name, args.controller_address, queue, len(processes) + 1),
args=(args.model_name, args.controller_address, queue, len(processes) + 1, log_level),
daemon=True,
)
process.start()
@ -440,7 +482,7 @@ if __name__ == "__main__":
no = queue.get()
if no == len(processes):
time.sleep(0.5)
dump_server_info(True)
dump_server_info(after_start=True, args=args)
break
else:
queue.put(no)

BIN
tests/samples/ocr_test.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.9 KiB

BIN
tests/samples/ocr_test.pdf Normal file

Binary file not shown.

View File

@ -10,8 +10,10 @@ from streamlit_option_menu import option_menu
from webui_pages import *
import os
from configs import VERSION
from server.utils import api_address
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False)
api = ApiRequest(base_url=api_address())
if __name__ == "__main__":
st.set_page_config(