This commit is contained in:
wvivi2023 2024-01-16 15:37:47 +08:00
parent c5d1ff6621
commit afa07ad208
7 changed files with 497 additions and 9 deletions

344
configs/model_config.py Normal file
View File

@ -0,0 +1,344 @@
import os
# 可以指定一个绝对路径统一存放所有的Embedding和LLM模型。
# 每个模型可以是一个单独的目录,也可以是某个目录下的二级子目录。
# 如果模型目录名称和 MODEL_PATH 中的 key 或 value 相同,程序会自动检测加载,无需修改 MODEL_PATH 中的路径。
MODEL_ROOT_PATH = ""
# 选用的 Embedding 名称
EMBEDDING_MODEL = "bge-large-zh"
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
EMBEDDING_DEVICE = "auto"
# 选用的reranker模型
RERANKER_MODEL = "bge-reranker-large"
# 是否启用reranker模型
USE_RERANKER = False
RERANKER_MAX_LENGTH = 1024
# 是否启用精排
USE_RANKING = False
# 如果需要在 EMBEDDING_MODEL 中增加自定义的关键字时配置
EMBEDDING_KEYWORD_FILE = "keywords.txt"
EMBEDDING_MODEL_OUTPUT_PATH = "output"
# 要运行的 LLM 名称,可以包括本地模型和在线模型。列表中本地模型将在启动项目时全部加载。
# 列表中第一个模型将作为 API 和 WEBUI 的默认模型。
# 在这里我们使用目前主流的两个离线模型其中chatglm3-6b 为默认加载模型。
# 如果你的显存不足,可使用 Qwen-1_8B-Chat, 该模型 FP16 仅需 3.8G显存。
# chatglm3-6b输出角色标签<|user|>及自问自答的问题详见项目wiki->常见问题->Q20.
LLM_MODELS = ["chatglm3-6b", "zhipu-api", "openai-api"] # "Qwen-1_8B-Chat",
# AgentLM模型的名称 (可以不指定指定之后就锁定进入Agent之后的Chain的模型不指定就是LLM_MODELS[0])
Agent_MODEL = None
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
LLM_DEVICE = "auto"
# 历史对话轮数
HISTORY_LEN = 3
# 大模型最长支持的长度,如果不填写,则使用模型默认的最大长度,如果填写,则为用户设定的最大长度
MAX_TOKENS = None
# LLM通用对话参数
TEMPERATURE = 0.7
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
ONLINE_LLM_MODEL = {
# 线上模型。请在server_config中为每个在线API设置不同的端口
"openai-api": {
"model_name": "gpt-3.5-turbo",
"api_base_url": "https://api.openai.com/v1",
"api_key": "",
"openai_proxy": "",
},
# 具体注册及api key获取请前往 http://open.bigmodel.cn
"zhipu-api": {
"api_key": "",
"version": "chatglm_turbo", # 可选包括 "chatglm_turbo"
"provider": "ChatGLMWorker",
},
# 具体注册及api key获取请前往 https://api.minimax.chat/
"minimax-api": {
"group_id": "",
"api_key": "",
"is_pro": False,
"provider": "MiniMaxWorker",
},
# 具体注册及api key获取请前往 https://xinghuo.xfyun.cn/
"xinghuo-api": {
"APPID": "",
"APISecret": "",
"api_key": "",
"version": "v1.5", # 你使用的讯飞星火大模型版本,可选包括 "v3.0", "v1.5", "v2.0"
"provider": "XingHuoWorker",
},
# 百度千帆 API申请方式请参考 https://cloud.baidu.com/doc/WENXINWORKSHOP/s/4lilb2lpf
"qianfan-api": {
"version": "ERNIE-Bot", # 注意大小写。当前支持 "ERNIE-Bot" 或 "ERNIE-Bot-turbo" 更多的见官方文档。
"version_url": "", # 也可以不填写version直接填写在千帆申请模型发布的API地址
"api_key": "",
"secret_key": "",
"provider": "QianFanWorker",
},
# 火山方舟 API文档参考 https://www.volcengine.com/docs/82379
"fangzhou-api": {
"version": "chatglm-6b-model", # 当前支持 "chatglm-6b-model" 更多的见文档模型支持列表中方舟部分。
"version_url": "", # 可以不填写version直接填写在方舟申请模型发布的API地址
"api_key": "",
"secret_key": "",
"provider": "FangZhouWorker",
},
# 阿里云通义千问 API文档参考 https://help.aliyun.com/zh/dashscope/developer-reference/api-details
"qwen-api": {
"version": "qwen-turbo", # 可选包括 "qwen-turbo", "qwen-plus"
"api_key": "", # 请在阿里云控制台模型服务灵积API-KEY管理页面创建
"provider": "QwenWorker",
"embed_model": "text-embedding-v1" # embedding 模型名称
},
# 百川 API申请方式请参考 https://www.baichuan-ai.com/home#api-enter
"baichuan-api": {
"version": "Baichuan2-53B", # 当前支持 "Baichuan2-53B" 见官方文档。
"api_key": "",
"secret_key": "",
"provider": "BaiChuanWorker",
},
# Azure API
"azure-api": {
"deployment_name": "", # 部署容器的名字
"resource_name": "", # https://{resource_name}.openai.azure.com/openai/ 填写resource_name的部分其他部分不要填写
"api_version": "", # API的版本不是模型版本
"api_key": "",
"provider": "AzureWorker",
},
# 昆仑万维天工 API https://model-platform.tiangong.cn/
"tiangong-api": {
"version": "SkyChat-MegaVerse",
"api_key": "",
"secret_key": "",
"provider": "TianGongWorker",
},
}
# 在以下字典中修改属性值以指定本地embedding模型存储位置。支持3种设置方法
# 1、将对应的值修改为模型绝对路径
# 2、不修改此处的值以 text2vec 为例):
# 2.1 如果{MODEL_ROOT_PATH}下存在如下任一子目录:
# - text2vec
# - GanymedeNil/text2vec-large-chinese
# - text2vec-large-chinese
# 2.2 如果以上本地路径不存在则使用huggingface模型
MODEL_PATH = {
"embed_model": {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
"text2vec-bge-large-chinese": "shibing624/text2vec-bge-large-chinese",
"m3e-small": "moka-ai/m3e-small",
"m3e-base": "moka-ai/m3e-base",
"m3e-large": "moka-ai/m3e-large",
"bge-small-zh": "BAAI/bge-small-zh",
"bge-base-zh": "BAAI/bge-base-zh",
"bge-large-zh": "BAAI/bge-large-zh",
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
"bge-base-zh-v1.5": "BAAI/bge-base-zh-v1.5",
"bge-large-zh-v1.5": "BAAI/bge-large-zh-v1.5",
"piccolo-base-zh": "sensenova/piccolo-base-zh",
"piccolo-large-zh": "sensenova/piccolo-large-zh",
"nlp_gte_sentence-embedding_chinese-large": "damo/nlp_gte_sentence-embedding_chinese-large",
"text-embedding-ada-002": "your OPENAI_API_KEY",
},
"llm_model": {
# 以下部分模型并未完全测试仅根据fastchat和vllm模型的模型列表推定支持
"chatglm2-6b": "THUDM/chatglm2-6b",
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
"chatglm3-6b": "THUDM/chatglm3-6b",
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
"chatglm3-6b-base": "THUDM/chatglm3-6b-base",
"Qwen-1_8B": "Qwen/Qwen-1_8B",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
# 在新版的transformers下需要手动修改模型的config.json文件在quantization_config字典中
# 增加`disable_exllama:true` 字段才能启动qwen的量化模型
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",
"Qwen-72B": "Qwen/Qwen-72B",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",
"baichuan2-13b": "baichuan-inc/Baichuan2-13B-Chat",
"baichuan2-7b": "baichuan-inc/Baichuan2-7B-Chat",
"baichuan-7b": "baichuan-inc/Baichuan-7B",
"baichuan-13b": "baichuan-inc/Baichuan-13B",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",
"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
"gpt2": "gpt2",
"gpt2-xl": "gpt2-xl",
"gpt-j-6b": "EleutherAI/gpt-j-6b",
"gpt4all-j": "nomic-ai/gpt4all-j",
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
"pythia-12b": "EleutherAI/pythia-12b",
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",
"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",
"Yi-34B-Chat": "01-ai/Yi-34B-Chat",
},
"reranker":{
"bge-reranker-large":"BAAI/bge-reranker-large",
"bge-reranker-base":"BAAI/bge-reranker-base",
#TODO 增加在线reranker如cohere
}
}
# 通常情况下不需要更改以下内容
# nltk 模型存储路径
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
VLLM_MODEL_DICT = {
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
"baichuan-7b": "baichuan-inc/Baichuan-7B",
"baichuan-13b": "baichuan-inc/Baichuan-13B",
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat",
"chatglm2-6b": "THUDM/chatglm2-6b",
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k",
"chatglm3-6b": "THUDM/chatglm3-6b",
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k",
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat",
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k",
# 注意bloom系列的tokenizer与model是分离的因此虽然vllm支持但与fschat框架不兼容
# "bloom": "bigscience/bloom",
# "bloomz": "bigscience/bloomz",
# "bloomz-560m": "bigscience/bloomz-560m",
# "bloomz-7b1": "bigscience/bloomz-7b1",
# "bloomz-1b7": "bigscience/bloomz-1b7",
"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",
"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
"gpt2": "gpt2",
"gpt2-xl": "gpt2-xl",
"gpt-j-6b": "EleutherAI/gpt-j-6b",
"gpt4all-j": "nomic-ai/gpt4all-j",
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
"pythia-12b": "EleutherAI/pythia-12b",
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf",
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",
"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
"Qwen-1_8B": "Qwen/Qwen-1_8B",
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat",
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8",
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4",
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8",
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4",
"Qwen-72B": "Qwen/Qwen-72B",
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat",
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8",
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4",
"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",
}
# 你认为支持Agent能力的模型可以在这里添加添加后不会出现可视化界面的警告
# 经过我们测试原生支持Agent的模型仅有以下几个
SUPPORT_AGENT_MODEL = [
"azure-api",
"openai-api",
"qwen-api",
"Qwen",
"chatglm3",
"xinghuo-api",
]

126
configs/prompt_config.py Normal file
View File

@ -0,0 +1,126 @@
# prompt模板使用Jinja2语法简单点就是用双大括号代替f-string的单大括号
# 本配置文件支持热加载修改prompt模板后无需重启服务。
# LLM对话支持的变量
# - input: 用户输入内容
# 知识库和搜索引擎对话支持的变量:
# - context: 从检索结果拼接的知识文本
# - question: 用户提出的问题
# Agent对话支持的变量
# - tools: 可用的工具列表
# - tool_names: 可用的工具名称列表
# - history: 用户和Agent的对话历史
# - input: 用户输入内容
# - agent_scratchpad: Agent的思维记录
PROMPT_TEMPLATES = {
"llm_chat": {
"default":
'{{ input }}',
"with_history":
'The following is a friendly conversation between a human and an AI. '
'The AI is talkative and provides lots of specific details from its context. '
'If the AI does not know the answer to a question, it truthfully says it does not know.\n\n'
'Current conversation:\n'
'{history}\n'
'Human: {input}\n'
'AI:',
"py":
'你是一个聪明的代码助手请你给我写出简单的py代码。 \n'
'{{ input }}',
},
"knowledge_base_chat": {
"default":
'<指令>你是一个电力公司相关的专家,请完全依据已知信息的内容,先找出与问题相关的信息,然后再根据这些相关信息回答简洁、专业地来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,'
'不允许在答案中添加编造成分,不回答与问题无关的内容,答案请使用中文。 </指令>\n'
'<已知信息>{{ context }}</已知信息>\n'
'<问题>{{ question }}</问题>\n',
"text":
'<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,答案请使用中文。 </指令>\n'
'<已知信息>{{ context }}</已知信息>\n'
'<问题>{{ question }}</问题>\n',
"empty": # 搜不到知识库的时候使用
'请你回答我的问题:\n'
'{{ question }}\n\n',
},
"search_engine_chat": {
"default":
'<指令>这是我搜索到的互联网信息,请你根据这些信息进行提取并有调理,简洁的回答问题。'
'如果无法从中得到答案,请说 “无法搜索到能回答问题的内容”。 </指令>\n'
'<已知信息>{{ context }}</已知信息>\n'
'<问题>{{ question }}</问题>\n',
"search":
'<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,答案请使用中文。 </指令>\n'
'<已知信息>{{ context }}</已知信息>\n'
'<问题>{{ question }}</问题>\n',
},
"agent_chat": {
"default":
'Answer the following questions as best you can. If it is in order, you can use some tools appropriately. '
'You have access to the following tools:\n\n'
'{tools}\n\n'
'Use the following format:\n'
'Question: the input question you must answer1\n'
'Thought: you should always think about what to do and what tools to use.\n'
'Action: the action to take, should be one of [{tool_names}]\n'
'Action Input: the input to the action\n'
'Observation: the result of the action\n'
'... (this Thought/Action/Action Input/Observation can be repeated zero or more times)\n'
'Thought: I now know the final answer\n'
'Final Answer: the final answer to the original input question\n'
'Begin!\n\n'
'history: {history}\n\n'
'Question: {input}\n\n'
'Thought: {agent_scratchpad}\n',
"ChatGLM3":
'You can answer using the tools, or answer directly using your knowledge without using the tools. '
'Respond to the human as helpfully and accurately as possible.\n'
'You have access to the following tools:\n'
'{tools}\n'
'Use a json blob to specify a tool by providing an action key (tool name) '
'and an action_input key (tool input).\n'
'Valid "action" values: "Final Answer" or [{tool_names}]'
'Provide only ONE action per $JSON_BLOB, as shown:\n\n'
'```\n'
'{{{{\n'
' "action": $TOOL_NAME,\n'
' "action_input": $INPUT\n'
'}}}}\n'
'```\n\n'
'Follow this format:\n\n'
'Question: input question to answer\n'
'Thought: consider previous and subsequent steps\n'
'Action:\n'
'```\n'
'$JSON_BLOB\n'
'```\n'
'Observation: action result\n'
'... (repeat Thought/Action/Observation N times)\n'
'Thought: I know what to respond\n'
'Action:\n'
'```\n'
'{{{{\n'
' "action": "Final Answer",\n'
' "action_input": "Final response to human"\n'
'}}}}\n'
'Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. '
'Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.\n'
'history: {history}\n\n'
'Question: {input}\n\n'
'Thought: {agent_scratchpad}',
}
}

View File

@ -7,6 +7,8 @@ from docx.oxml.text.paragraph import CT_P
from docx.oxml.table import CT_Tbl
from docx.table import _Cell, Table
from docx.text.paragraph import Paragraph
#from langchain.document_loaders.unstructured import UnstructuredFileLoader
#from langchain.document_loaders.word_document import Docx2txtLoader
class RapidWordLoader(UnstructuredFileLoader):
def _get_elements(self) -> List:
@ -57,6 +59,8 @@ class RapidWordLoader(UnstructuredFileLoader):
doc = docxDocument(filepath)
for block in iter_block_items(doc):
if isinstance(block,Paragraph):
#print(f"Paragraph:{block.text}")
resp += (block.text + "\n\n")
elif isinstance(block, Table):
resp += read_table(block) + "\n"
@ -68,10 +72,12 @@ class RapidWordLoader(UnstructuredFileLoader):
text = word2text(self.file_path)
from unstructured.partition.text import partition_text
return partition_text(text=text, **self.unstructured_kwargs)
return partition_text(text=text, paragraph_grouper = False, **self.unstructured_kwargs)
if __name__ == "__main__":
loader = RapidWordLoader(file_path="/Users/wangvivi/Desktop/MySelf/AI/Test/国家电网公司供电企业组织机构规范标准.docx")
loader = RapidWordLoader(file_path="/Users/wangvivi/Desktop/Work/思极GPT/数字化部/设备类all/sb389/10kV带电作业用绝缘斗臂车.docx")
#loader = Docx2txtLoader(file_path="/Users/wangvivi/Desktop/Work/思极GPT/数字化部/设备类all/sb389/10kV带电作业用绝缘斗臂车.docx")
#loader = RapidWordLoader(file_path="/Users/wangvivi/Desktop/MySelf/AI/Test/这是一个测试文档_副本2.docx")
docs = loader.load()
print(docs)

View File

@ -27,7 +27,7 @@ from server.agent import model_container
from pydantic import BaseModel, Field
## 使用和风天气API查询天气
KEY = "ac880e5a877042809ac7ffdd19d95b0d"
KEY = "1234567890wangweiwei"
# key长这样这里提供了示例的key这个key没法使用你需要自己去注册和风天气的账号然后在这里填入你的key

View File

@ -19,7 +19,7 @@ tools = [
Tool.from_function(
func=weathercheck,
name="weather_check",
description="",
description="Use this tools to answer questons about weather",
args_schema=WhetherSchema,
),
Tool.from_function(

View File

@ -17,7 +17,7 @@ from server.chat.utils import History
import json
from server.agent import model_container
from server.knowledge_base.kb_service.base import get_kb_details
from fastapi.responses import StreamingResponse
async def agent_chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
history: List[History] = Body([],
@ -29,7 +29,7 @@ async def agent_chat(query: str = Body(..., description="用户输入", examples
),
stream: bool = Body(False, description="流式输出"),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=0.9),
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量默认None代表模型最大值"),
prompt_name: str = Body("default",
description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
@ -59,6 +59,8 @@ async def agent_chat(query: str = Body(..., description="用户输入", examples
kb_list = {x["kb_name"]: x for x in get_kb_details()}
model_container.DATABASE = {name: details['kb_info'] for name, details in kb_list.items()}
print(f"agent_chat_iterator model_container.DATABASE:{model_container.DATABASE}")
print(f"agent_chat_iterator temperature:{temperature}")
if Agent_MODEL:
## 如果有指定使用Agent模型来完成任务
model_agent = get_ChatOpenAI(
@ -68,8 +70,10 @@ async def agent_chat(query: str = Body(..., description="用户输入", examples
callbacks=[callback],
)
model_container.MODEL = model_agent
print(f"111 agent_chat_iterator :model_container.MODEL:{ model_container.MODEL}")
else:
model_container.MODEL = model
print(f"222 agent_chat_iterator :model_container.MODEL:{model_container.MODEL}")
prompt_template = get_prompt_template("agent_chat", prompt_name)
prompt_template_agent = CustomPromptTemplate(
@ -91,6 +95,7 @@ async def agent_chat(query: str = Body(..., description="用户输入", examples
memory.chat_memory.add_ai_message(message.content)
if "chatglm3" in model_container.MODEL.model_name:
print(f"model_container.MODEL.model_name is chatglm3")
agent_executor = initialize_glm3_agent(
llm=model,
tools=tools,
@ -180,8 +185,13 @@ async def agent_chat(query: str = Body(..., description="用户输入", examples
yield json.dumps({"answer": answer, "final_answer": final_answer}, ensure_ascii=False)
await task
return EventSourceResponse(agent_chat_iterator(query=query,
return StreamingResponse(agent_chat_iterator(query=query,
history=history,
model_name=model_name,
prompt_name=prompt_name),
)
media_type="text/event-stream")
# return EventSourceResponse(agent_chat_iterator(query=query,
# history=history,
# model_name=model_name,
# prompt_name=prompt_name),
# )

View File

@ -350,7 +350,9 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
temperature=temperature,
):
try:
print(f"1111自定义Agent问答, d:{d}")
d = json.loads(d)
print(f"22222自定义Agent问答, d:{d}")
except:
pass
if error_msg := check_error_msg(d): # check whether error occured