优化LLM和Embedding模型运行设备配置,可设为auto自动检测;修复:重建知识库时FAISS未保存 (#1330)
* 避免configs对torch的依赖; * webui自动从configs获取api地址(close #1319) * bug fix: 重建知识库时FAISS未保存 * 优化LLM和Embedding模型运行设备配置,可设为auto自动检测
This commit is contained in:
parent
26a9237237
commit
b1201a5f23
|
|
@ -3,7 +3,7 @@
|
|||
logs
|
||||
.idea/
|
||||
__pycache__/
|
||||
knowledge_base/
|
||||
/knowledge_base/
|
||||
configs/*.py
|
||||
.vscode/
|
||||
.pytest_cache/
|
||||
|
|
|
|||
|
|
@ -7,19 +7,6 @@ logger.setLevel(logging.INFO)
|
|||
logging.basicConfig(format=LOG_FORMAT)
|
||||
|
||||
|
||||
# 分布式部署时,不运行LLM的机器上可以不装torch
|
||||
def default_device():
|
||||
try:
|
||||
import torch
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
if torch.backends.mps.is_available():
|
||||
return "mps"
|
||||
except:
|
||||
pass
|
||||
return "cpu"
|
||||
|
||||
|
||||
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
|
||||
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
|
||||
# 此处请写绝对路径
|
||||
|
|
@ -44,8 +31,8 @@ embedding_model_dict = {
|
|||
# 选用的 Embedding 名称
|
||||
EMBEDDING_MODEL = "m3e-base"
|
||||
|
||||
# Embedding 模型运行设备
|
||||
EMBEDDING_DEVICE = default_device()
|
||||
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
||||
EMBEDDING_DEVICE = "auto"
|
||||
|
||||
|
||||
llm_model_dict = {
|
||||
|
|
@ -94,8 +81,8 @@ LLM_MODEL = "chatglm2-6b"
|
|||
# 历史对话轮数
|
||||
HISTORY_LEN = 3
|
||||
|
||||
# LLM 运行设备
|
||||
LLM_DEVICE = default_device()
|
||||
# LLM 运行设备。可选项同Embedding 运行设备。
|
||||
LLM_DEVICE = "auto"
|
||||
|
||||
# 日志存储路径
|
||||
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
|
||||
|
|
|
|||
|
|
@ -18,11 +18,12 @@ from server.db.repository.knowledge_file_repository import (
|
|||
)
|
||||
|
||||
from configs.model_config import (kbs_config, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD,
|
||||
EMBEDDING_DEVICE, EMBEDDING_MODEL)
|
||||
EMBEDDING_MODEL)
|
||||
from server.knowledge_base.utils import (
|
||||
get_kb_path, get_doc_path, load_embeddings, KnowledgeFile,
|
||||
list_kbs_from_folder, list_files_from_folder,
|
||||
)
|
||||
from server.utils import embedding_device
|
||||
from typing import List, Union, Dict
|
||||
|
||||
|
||||
|
|
@ -45,7 +46,7 @@ class KBService(ABC):
|
|||
self.doc_path = get_doc_path(self.kb_name)
|
||||
self.do_init()
|
||||
|
||||
def _load_embeddings(self, embed_device: str = EMBEDDING_DEVICE) -> Embeddings:
|
||||
def _load_embeddings(self, embed_device: str = embedding_device()) -> Embeddings:
|
||||
return load_embeddings(self.embed_model, embed_device)
|
||||
|
||||
def create_kb(self):
|
||||
|
|
|
|||
|
|
@ -5,7 +5,6 @@ from configs.model_config import (
|
|||
KB_ROOT_PATH,
|
||||
CACHED_VS_NUM,
|
||||
EMBEDDING_MODEL,
|
||||
EMBEDDING_DEVICE,
|
||||
SCORE_THRESHOLD
|
||||
)
|
||||
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
|
||||
|
|
@ -15,7 +14,7 @@ from langchain.vectorstores import FAISS
|
|||
from langchain.embeddings.base import Embeddings
|
||||
from typing import List
|
||||
from langchain.docstore.document import Document
|
||||
from server.utils import torch_gc
|
||||
from server.utils import torch_gc, embedding_device
|
||||
|
||||
|
||||
_VECTOR_STORE_TICKS = {}
|
||||
|
|
@ -25,10 +24,10 @@ _VECTOR_STORE_TICKS = {}
|
|||
def load_faiss_vector_store(
|
||||
knowledge_base_name: str,
|
||||
embed_model: str = EMBEDDING_MODEL,
|
||||
embed_device: str = EMBEDDING_DEVICE,
|
||||
embed_device: str = embedding_device(),
|
||||
embeddings: Embeddings = None,
|
||||
tick: int = 0, # tick will be changed by upload_doc etc. and make cache refreshed.
|
||||
):
|
||||
) -> FAISS:
|
||||
print(f"loading vector store in '{knowledge_base_name}'.")
|
||||
vs_path = get_vs_path(knowledge_base_name)
|
||||
if embeddings is None:
|
||||
|
|
@ -74,13 +73,18 @@ class FaissKBService(KBService):
|
|||
def get_kb_path(self):
|
||||
return os.path.join(KB_ROOT_PATH, self.kb_name)
|
||||
|
||||
def load_vector_store(self):
|
||||
def load_vector_store(self) -> FAISS:
|
||||
return load_faiss_vector_store(
|
||||
knowledge_base_name=self.kb_name,
|
||||
embed_model=self.embed_model,
|
||||
tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0),
|
||||
)
|
||||
|
||||
def save_vector_store(self, vector_store: FAISS = None):
|
||||
vector_store = vector_store or self.load_vector_store()
|
||||
vector_store.save_local(self.vs_path)
|
||||
return vector_store
|
||||
|
||||
def refresh_vs_cache(self):
|
||||
refresh_vs_cache(self.kb_name)
|
||||
|
||||
|
|
@ -117,11 +121,11 @@ class FaissKBService(KBService):
|
|||
if not kwargs.get("not_refresh_vs_cache"):
|
||||
vector_store.save_local(self.vs_path)
|
||||
self.refresh_vs_cache()
|
||||
return vector_store
|
||||
|
||||
def do_delete_doc(self,
|
||||
kb_file: KnowledgeFile,
|
||||
**kwargs):
|
||||
embeddings = self._load_embeddings()
|
||||
vector_store = self.load_vector_store()
|
||||
|
||||
ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
|
||||
|
|
@ -133,7 +137,7 @@ class FaissKBService(KBService):
|
|||
vector_store.save_local(self.vs_path)
|
||||
self.refresh_vs_cache()
|
||||
|
||||
return True
|
||||
return vector_store
|
||||
|
||||
def do_clear_vs(self):
|
||||
shutil.rmtree(self.vs_path)
|
||||
|
|
|
|||
|
|
@ -6,16 +6,16 @@ from langchain.vectorstores import PGVector
|
|||
from langchain.vectorstores.pgvector import DistanceStrategy
|
||||
from sqlalchemy import text
|
||||
|
||||
from configs.model_config import EMBEDDING_DEVICE, kbs_config
|
||||
from configs.model_config import kbs_config
|
||||
from server.knowledge_base.kb_service.base import SupportedVSType, KBService, EmbeddingsFunAdapter, \
|
||||
score_threshold_process
|
||||
from server.knowledge_base.utils import load_embeddings, KnowledgeFile
|
||||
|
||||
from server.utils import embedding_device as get_embedding_device
|
||||
|
||||
class PGKBService(KBService):
|
||||
pg_vector: PGVector
|
||||
|
||||
def _load_pg_vector(self, embedding_device: str = EMBEDDING_DEVICE, embeddings: Embeddings = None):
|
||||
def _load_pg_vector(self, embedding_device: str = get_embedding_device(), embeddings: Embeddings = None):
|
||||
_embeddings = embeddings
|
||||
if _embeddings is None:
|
||||
_embeddings = load_embeddings(self.embed_model, embedding_device)
|
||||
|
|
|
|||
|
|
@ -69,6 +69,7 @@ def folder2db(
|
|||
print(result)
|
||||
|
||||
if kb.vs_type() == SupportedVSType.FAISS:
|
||||
kb.save_vector_store()
|
||||
kb.refresh_vs_cache()
|
||||
elif mode == "fill_info_only":
|
||||
files = list_files_from_folder(kb_name)
|
||||
|
|
@ -85,6 +86,7 @@ def folder2db(
|
|||
kb.update_doc(kb_file, not_refresh_vs_cache=True)
|
||||
|
||||
if kb.vs_type() == SupportedVSType.FAISS:
|
||||
kb.save_vector_store()
|
||||
kb.refresh_vs_cache()
|
||||
elif mode == "increament":
|
||||
db_files = kb.list_files()
|
||||
|
|
@ -102,6 +104,7 @@ def folder2db(
|
|||
print(result)
|
||||
|
||||
if kb.vs_type() == SupportedVSType.FAISS:
|
||||
kb.save_vector_store()
|
||||
kb.refresh_vs_cache()
|
||||
else:
|
||||
print(f"unspported migrate mode: {mode}")
|
||||
|
|
@ -131,7 +134,10 @@ def prune_db_files(kb_name: str):
|
|||
files = list(set(files_in_db) - set(files_in_folder))
|
||||
kb_files = file_to_kbfile(kb_name, files)
|
||||
for kb_file in kb_files:
|
||||
kb.delete_doc(kb_file)
|
||||
kb.delete_doc(kb_file, not_refresh_vs_cache=True)
|
||||
if kb.vs_type() == SupportedVSType.FAISS:
|
||||
kb.save_vector_store()
|
||||
kb.refresh_vs_cache()
|
||||
return kb_files
|
||||
|
||||
def prune_folder_files(kb_name: str):
|
||||
|
|
|
|||
|
|
@ -4,8 +4,8 @@ import sys
|
|||
import os
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
||||
from configs.model_config import llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, logger
|
||||
from server.utils import MakeFastAPIOffline, set_httpx_timeout
|
||||
from configs.model_config import llm_model_dict, LLM_MODEL, LOG_PATH, logger
|
||||
from server.utils import MakeFastAPIOffline, set_httpx_timeout, llm_device
|
||||
|
||||
|
||||
host_ip = "0.0.0.0"
|
||||
|
|
@ -34,7 +34,7 @@ def create_model_worker_app(
|
|||
worker_address=base_url.format(model_worker_port),
|
||||
controller_address=base_url.format(controller_port),
|
||||
model_path=llm_model_dict[LLM_MODEL].get("local_model_path"),
|
||||
device=LLM_DEVICE,
|
||||
device=llm_device(),
|
||||
gpus=None,
|
||||
max_gpu_memory="20GiB",
|
||||
load_8bit=False,
|
||||
|
|
|
|||
|
|
@ -5,8 +5,8 @@ import torch
|
|||
from fastapi import FastAPI
|
||||
from pathlib import Path
|
||||
import asyncio
|
||||
from configs.model_config import LLM_MODEL
|
||||
from typing import Any, Optional
|
||||
from configs.model_config import LLM_MODEL, LLM_DEVICE, EMBEDDING_DEVICE
|
||||
from typing import Literal, Optional
|
||||
|
||||
|
||||
class BaseResponse(BaseModel):
|
||||
|
|
@ -201,6 +201,7 @@ def get_model_worker_config(model_name: str = LLM_MODEL) -> dict:
|
|||
config = FSCHAT_MODEL_WORKERS.get("default", {}).copy()
|
||||
config.update(llm_model_dict.get(model_name, {}))
|
||||
config.update(FSCHAT_MODEL_WORKERS.get(model_name, {}))
|
||||
config["device"] = llm_device(config.get("device"))
|
||||
return config
|
||||
|
||||
|
||||
|
|
@ -256,3 +257,28 @@ def set_httpx_timeout(timeout: float = None):
|
|||
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
|
||||
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
|
||||
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
|
||||
|
||||
|
||||
# 自动检查torch可用的设备。分布式部署时,不运行LLM的机器上可以不装torch
|
||||
def detect_device() -> Literal["cuda", "mps", "cpu"]:
|
||||
try:
|
||||
import torch
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
if torch.backends.mps.is_available():
|
||||
return "mps"
|
||||
except:
|
||||
pass
|
||||
return "cpu"
|
||||
|
||||
|
||||
def llm_device(device: str = LLM_DEVICE) -> Literal["cuda", "mps", "cpu"]:
|
||||
if device not in ["cuda", "mps", "cpu"]:
|
||||
device = detect_device()
|
||||
return device
|
||||
|
||||
|
||||
def embedding_device(device: str = EMBEDDING_DEVICE) -> Literal["cuda", "mps", "cpu"]:
|
||||
if device not in ["cuda", "mps", "cpu"]:
|
||||
device = detect_device()
|
||||
return device
|
||||
|
|
|
|||
11
startup.py
11
startup.py
|
|
@ -14,12 +14,13 @@ except:
|
|||
pass
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
||||
from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, \
|
||||
from configs.model_config import EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LOG_PATH, \
|
||||
logger
|
||||
from configs.server_config import (WEBUI_SERVER, API_SERVER, OPEN_CROSS_DOMAIN, FSCHAT_CONTROLLER, FSCHAT_MODEL_WORKERS,
|
||||
FSCHAT_OPENAI_API, )
|
||||
from server.utils import (fschat_controller_address, fschat_model_worker_address,
|
||||
fschat_openai_api_address, set_httpx_timeout)
|
||||
fschat_openai_api_address, set_httpx_timeout,
|
||||
llm_device, embedding_device, get_model_worker_config)
|
||||
from server.utils import MakeFastAPIOffline, FastAPI
|
||||
import argparse
|
||||
from typing import Tuple, List
|
||||
|
|
@ -195,7 +196,7 @@ def run_model_worker(
|
|||
):
|
||||
import uvicorn
|
||||
|
||||
kwargs = FSCHAT_MODEL_WORKERS[model_name].copy()
|
||||
kwargs = get_model_worker_config(model_name)
|
||||
host = kwargs.pop("host")
|
||||
port = kwargs.pop("port")
|
||||
model_path = llm_model_dict[model_name].get("local_model_path", "")
|
||||
|
|
@ -331,9 +332,9 @@ def dump_server_info(after_start=False):
|
|||
print(f"项目版本:{VERSION}")
|
||||
print(f"langchain版本:{langchain.__version__}. fastchat版本:{fastchat.__version__}")
|
||||
print("\n")
|
||||
print(f"当前LLM模型:{LLM_MODEL} @ {LLM_DEVICE}")
|
||||
print(f"当前LLM模型:{LLM_MODEL} @ {llm_device()}")
|
||||
pprint(llm_model_dict[LLM_MODEL])
|
||||
print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {EMBEDDING_DEVICE}")
|
||||
print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {embedding_device()}")
|
||||
if after_start:
|
||||
print("\n")
|
||||
print(f"服务端运行信息:")
|
||||
|
|
|
|||
Loading…
Reference in New Issue