update kb_doc_api.py

This commit is contained in:
imClumsyPanda 2023-08-06 18:32:10 +08:00
parent a447529c2e
commit b91d96ab0c
5 changed files with 140 additions and 115 deletions

View File

@ -1,7 +1,7 @@
from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import llm_model_dict, LLM_MODEL
from .utils import wrap_done
from server.chat.utils import wrap_done
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler

View File

@ -4,15 +4,13 @@ from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K)
from server.chat.utils import wrap_done
from server.utils import BaseResponse
import os
from server.knowledge_base.utils import get_kb_path
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts import PromptTemplate
from server.knowledge_base.utils import lookup_vs
from server.knowledge_base.knowledge_base import KnowledgeBase
import json
@ -20,12 +18,12 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
knowledge_base_name: str = Body(..., description="知识库名称", example="samples"),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
):
kb_path = get_kb_path(knowledge_base_name)
if not os.path.exists(kb_path):
if not KnowledgeBase.exists(knowledge_base_name=knowledge_base_name):
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
kb = KnowledgeBase.load(knowledge_base_name=knowledge_base_name)
async def knowledge_base_chat_iterator(query: str,
knowledge_base_name: str,
kb: KnowledgeBase,
top_k: int,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
@ -37,7 +35,7 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
docs = lookup_vs(query, knowledge_base_name, top_k)
docs = kb.search_docs(query, top_k)
context = "\n".join([doc.page_content for doc in docs])
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
@ -60,5 +58,5 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
"docs": source_documents})
await task
return StreamingResponse(knowledge_base_chat_iterator(query, knowledge_base_name, top_k),
return StreamingResponse(knowledge_base_chat_iterator(query, kb, top_k),
media_type="text/event-stream")

View File

@ -1,10 +1,8 @@
import os
import urllib
import shutil
from fastapi import File, Form, UploadFile
from server.utils import BaseResponse, ListResponse
from server.knowledge_base.utils import (validate_kb_name, get_kb_path, get_doc_path,
get_file_path, refresh_vs_cache, get_vs_path)
from server.knowledge_base.utils import (validate_kb_name)
from fastapi.responses import StreamingResponse
import json
from server.knowledge_base.knowledge_file import KnowledgeFile
@ -16,8 +14,7 @@ async def list_docs(knowledge_base_name: str):
return ListResponse(code=403, msg="Don't attack me", data=[])
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
kb_path = get_kb_path(knowledge_base_name)
if not os.path.exists(kb_path):
if not KnowledgeBase.exists(knowledge_base_name=knowledge_base_name):
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
else:
all_doc_names = KnowledgeBase.load(knowledge_base_name=knowledge_base_name).list_docs()
@ -42,9 +39,10 @@ async def upload_doc(file: UploadFile = File(description="上传文件"),
knowledge_base_name=knowledge_base_name)
if (os.path.exists(kb_file.filepath)
and not override
and os.path.getsize(kb_file.filepath) == len(file_content)
and not override
and os.path.getsize(kb_file.filepath) == len(file_content)
):
# TODO: filesize 不同后的处理
file_status = f"文件 {kb_file.filename} 已存在。"
return BaseResponse(code=404, msg=file_status)
@ -83,6 +81,7 @@ async def update_doc():
# refresh_vs_cache(knowledge_base_name)
pass
async def download_doc():
# TODO: 下载文件
pass
@ -93,24 +92,21 @@ async def recreate_vector_store(knowledge_base_name: str):
recreate vector store from the content.
this is usefull when user can copy files to content folder directly instead of upload through network.
'''
async def output(kb_name):
vs_path = get_vs_path(kb_name)
if os.path.isdir(vs_path):
shutil.rmtree(vs_path)
os.mkdir(vs_path)
print(f"start to recreate vectore in {vs_path}")
kb = KnowledgeBase.load(knowledge_base_name=knowledge_base_name)
docs = (await list_docs(kb_name)).data
async def output(kb: KnowledgeBase):
kb.recreate_vs()
print(f"start to recreate vector store of {kb.kb_name}")
docs = kb.list_docs()
for i, filename in enumerate(docs):
kb_file = KnowledgeFile(filename=filename,
knowledge_base_name=kb_name)
knowledge_base_name=kb.kb_name)
print(f"processing {kb_file.filepath} to vector store.")
kb = KnowledgeBase.load(knowledge_base_name=kb_name)
kb.add_doc(kb_file)
yield json.dumps({
"total": len(docs),
"finished": i + 1,
"doc": filename,
})
return StreamingResponse(output(knowledge_base_name), media_type="text/event-stream")
return StreamingResponse(output(kb), media_type="text/event-stream")

View File

@ -3,15 +3,62 @@ import sqlite3
import datetime
import shutil
from langchain.vectorstores import FAISS
from server.knowledge_base.utils import (get_vs_path, get_kb_path, get_doc_path,
refresh_vs_cache, load_embeddings)
from configs.model_config import (embedding_model_dict, EMBEDDING_MODEL,
EMBEDDING_DEVICE, DB_ROOT_PATH)
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from configs.model_config import (embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE,
KB_ROOT_PATH, DB_ROOT_PATH, VECTOR_SEARCH_TOP_K, CACHED_VS_NUM)
from server.utils import torch_gc
from functools import lru_cache
from server.knowledge_base.knowledge_file import KnowledgeFile
from typing import List
import numpy as np
SUPPORTED_VS_TYPES = ["faiss", "milvus"]
_VECTOR_STORE_TICKS = {}
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
def get_doc_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "content")
def get_vs_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "vector_store")
def get_file_path(knowledge_base_name: str, doc_name: str):
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
@lru_cache(1)
def load_embeddings(model: str, device: str):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
model_kwargs={'device': device})
return embeddings
@lru_cache(CACHED_VS_NUM)
def load_vector_store(
knowledge_base_name: str,
embedding_model: str,
embedding_device: str,
tick: int, # tick will be changed by upload_doc etc. and make cache refreshed.
):
print(f"loading vector store in '{knowledge_base_name}' with '{embedding_model}' embeddings.")
embeddings = load_embeddings(embedding_model, embedding_device)
vs_path = get_vs_path(knowledge_base_name)
search_index = FAISS.load_local(vs_path, embeddings)
return search_index
def refresh_vs_cache(kb_name: str):
"""
make vector store cache refreshed when next loading
"""
_VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1
def list_kbs_from_db():
conn = sqlite3.connect(DB_ROOT_PATH)
@ -149,6 +196,7 @@ def list_docs_from_db(kb_name):
conn.close()
return kbs
def add_doc_to_db(kb_file: KnowledgeFile):
conn = sqlite3.connect(DB_ROOT_PATH)
c = conn.cursor()
@ -164,14 +212,23 @@ def add_doc_to_db(kb_file: KnowledgeFile):
create_time DATETIME) ''')
# Insert a row of data
# TODO: 同名文件添加至知识库时file_version增加
c.execute(f"""INSERT INTO knowledge_files
(file_name, file_ext, kb_name, document_loader_name, text_splitter_name, file_version, create_time)
VALUES
('{kb_file.filename}','{kb_file.ext}','{kb_file.kb_name}', '{kb_file.document_loader_name}',
'{kb_file.text_splitter_name}',0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""")
c.execute(f"""SELECT 1 FROM knowledge_files WHERE file_name="{kb_file.filename}" AND kb_name="{kb_file.kb_name}" """)
record_exist = c.fetchone()
if record_exist is not None:
c.execute(f"""UPDATE knowledge_files
SET file_version = file_version + 1
WHERE file_name="{kb_file.filename}" AND kb_name="{kb_file.kb_name}"
""")
else:
c.execute(f"""INSERT INTO knowledge_files
(file_name, file_ext, kb_name, document_loader_name, text_splitter_name, file_version, create_time)
VALUES
('{kb_file.filename}','{kb_file.ext}','{kb_file.kb_name}', '{kb_file.document_loader_name}',
'{kb_file.text_splitter_name}',0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""")
conn.commit()
conn.close()
def delete_file_from_db(kb_file: KnowledgeFile):
conn = sqlite3.connect(DB_ROOT_PATH)
c = conn.cursor()
@ -195,6 +252,7 @@ def delete_file_from_db(kb_file: KnowledgeFile):
conn.close()
return True
def doc_exists(kb_file: KnowledgeFile):
conn = sqlite3.connect(DB_ROOT_PATH)
c = conn.cursor()
@ -217,6 +275,24 @@ def doc_exists(kb_file: KnowledgeFile):
return status
def delete_doc_from_faiss(vector_store: FAISS, ids: List[str]):
overlapping = set(ids).intersection(vector_store.index_to_docstore_id.values())
if not overlapping:
raise ValueError("ids do not exist in the current object")
_reversed_index = {v: k for k, v in vector_store.index_to_docstore_id.items()}
index_to_delete = [_reversed_index[i] for i in ids]
vector_store.index.remove_ids(np.array(index_to_delete, dtype=np.int64))
for _id in index_to_delete:
del vector_store.index_to_docstore_id[_id]
# Remove items from docstore.
overlapping2 = set(ids).intersection(vector_store.docstore._dict)
if not overlapping2:
raise ValueError(f"Tried to delete ids that does not exist: {ids}")
for _id in ids:
vector_store.docstore._dict.pop(_id)
return vector_store
class KnowledgeBase:
def __init__(self,
knowledge_base_name: str,
@ -249,21 +325,25 @@ class KnowledgeBase:
pass
return True
def recreate_vs(self):
if self.vs_type in ["faiss"]:
shutil.rmtree(self.vs_path)
self.create()
def add_doc(self, kb_file: KnowledgeFile):
docs = kb_file.file2text()
vs_path = get_vs_path(self.kb_name)
embeddings = load_embeddings(self.embed_model, EMBEDDING_DEVICE)
if self.vs_type in ["faiss"]:
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
vector_store = FAISS.load_local(vs_path, embeddings)
if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path):
vector_store = FAISS.load_local(self.vs_path, embeddings)
vector_store.add_documents(docs)
torch_gc()
else:
if not os.path.exists(vs_path):
os.makedirs(vs_path)
if not os.path.exists(self.vs_path):
os.makedirs(self.vs_path)
vector_store = FAISS.from_documents(docs, embeddings) # docs 为Document列表
torch_gc()
vector_store.save_local(vs_path)
vector_store.save_local(self.vs_path)
add_doc_to_db(kb_file)
refresh_vs_cache(self.kb_name)
elif self.vs_type in ["milvus"]:
@ -275,7 +355,18 @@ class KnowledgeBase:
os.remove(kb_file.filepath)
if self.vs_type in ["faiss"]:
# TODO: 从FAISS向量库中删除文档
delete_file_from_db(kb_file)
embeddings = load_embeddings(self.embed_model, EMBEDDING_DEVICE)
if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path):
vector_store = FAISS.load_local(self.vs_path, embeddings)
ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
if len(ids) == 0:
return None
print(len(ids))
vector_store = delete_doc_from_faiss(vector_store, ids)
vector_store.save_local(self.vs_path)
refresh_vs_cache(self.kb_name)
delete_file_from_db(kb_file)
return True
def exist_doc(self, file_name: str):
return doc_exists(KnowledgeFile(knowledge_base_name=self.kb_name,
@ -284,6 +375,17 @@ class KnowledgeBase:
def list_docs(self):
return list_docs_from_db(self.kb_name)
def search_docs(self,
query: str,
top_k: int = VECTOR_SEARCH_TOP_K,
embedding_device: str = EMBEDDING_DEVICE, ):
search_index = load_vector_store(self.kb_name,
self.embed_model,
embedding_device,
_VECTOR_STORE_TICKS.get(self.kb_name))
docs = search_index.similarity_search(query, k=top_k)
return docs
@classmethod
def exists(cls,
knowledge_base_name: str):
@ -316,4 +418,5 @@ if __name__ == "__main__":
# kb = KnowledgeBase("123", "faiss")
# kb.create()
kb = KnowledgeBase.load(knowledge_base_name="123")
kb.delete_doc(KnowledgeFile(knowledge_base_name="123", filename="README.md"))
print()

View File

@ -1,77 +1,5 @@
import os
from configs.model_config import KB_ROOT_PATH
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from configs.model_config import (CACHED_VS_NUM, VECTOR_SEARCH_TOP_K,
embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
from functools import lru_cache
_VECTOR_STORE_TICKS = {}
def get_kb_path(knowledge_base_name: str):
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
def get_doc_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "content")
def get_vs_path(knowledge_base_name: str):
return os.path.join(get_kb_path(knowledge_base_name), "vector_store")
def get_file_path(knowledge_base_name: str, doc_name: str):
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
def validate_kb_name(knowledge_base_id: str) -> bool:
# 检查是否包含预期外的字符或路径攻击关键字
if "../" in knowledge_base_id:
return False
return True
@lru_cache(1)
def load_embeddings(model: str, device: str):
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
model_kwargs={'device': device})
return embeddings
@lru_cache(CACHED_VS_NUM)
def load_vector_store(
knowledge_base_name: str,
embedding_model: str,
embedding_device: str,
tick: int, # tick will be changed by upload_doc etc. and make cache refreshed.
):
print(f"loading vector store in '{knowledge_base_name}' with '{embedding_model}' embeddings.")
embeddings = load_embeddings(embedding_model, embedding_device)
vs_path = get_vs_path(knowledge_base_name)
search_index = FAISS.load_local(vs_path, embeddings)
return search_index
def lookup_vs(
query: str,
knowledge_base_name: str,
top_k: int = VECTOR_SEARCH_TOP_K,
embedding_model: str = EMBEDDING_MODEL,
embedding_device: str = EMBEDDING_DEVICE,
):
search_index = load_vector_store(knowledge_base_name,
embedding_model,
embedding_device,
_VECTOR_STORE_TICKS.get(knowledge_base_name))
docs = search_index.similarity_search(query, k=top_k)
return docs
def refresh_vs_cache(kb_name: str):
"""
make vector store cache refreshed when next loading
"""
_VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1