Merge branch 'dev' of https://github.com/imClumsyPanda/langchain-ChatGLM into dev
This commit is contained in:
commit
bbb1c0707d
|
|
@ -10,6 +10,8 @@ import numpy as np
|
||||||
from utils import torch_gc
|
from utils import torch_gc
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from pypinyin import lazy_pinyin
|
from pypinyin import lazy_pinyin
|
||||||
|
from loader import UnstructuredPaddleImageLoader
|
||||||
|
from loader import UnstructuredPaddlePDFLoader
|
||||||
|
|
||||||
DEVICE_ = EMBEDDING_DEVICE
|
DEVICE_ = EMBEDDING_DEVICE
|
||||||
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
||||||
|
|
@ -21,16 +23,31 @@ def load_file(filepath, sentence_size=SENTENCE_SIZE):
|
||||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||||
docs = loader.load()
|
docs = loader.load()
|
||||||
elif filepath.lower().endswith(".pdf"):
|
elif filepath.lower().endswith(".pdf"):
|
||||||
loader = UnstructuredFileLoader(filepath, strategy="fast")
|
loader = UnstructuredPaddlePDFLoader(filepath)
|
||||||
textsplitter = ChineseTextSplitter(pdf=True, sentence_size=sentence_size)
|
textsplitter = ChineseTextSplitter(pdf=True, sentence_size=sentence_size)
|
||||||
docs = loader.load_and_split(textsplitter)
|
docs = loader.load_and_split(textsplitter)
|
||||||
|
elif filepath.lower().endswith(".jpg") or filepath.lower().endswith(".png"):
|
||||||
|
loader = UnstructuredPaddleImageLoader(filepath, mode="elements")
|
||||||
|
textsplitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
|
||||||
|
docs = loader.load_and_split(text_splitter=textsplitter)
|
||||||
else:
|
else:
|
||||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||||
textsplitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
|
textsplitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
|
||||||
docs = loader.load_and_split(text_splitter=textsplitter)
|
docs = loader.load_and_split(text_splitter=textsplitter)
|
||||||
|
write_check_file(filepath, docs)
|
||||||
return docs
|
return docs
|
||||||
|
|
||||||
|
|
||||||
|
def write_check_file(filepath, docs):
|
||||||
|
fout = open('load_file.txt', 'a')
|
||||||
|
fout.write("filepath=%s,len=%s" % (filepath, len(docs)))
|
||||||
|
fout.write('\n')
|
||||||
|
for i in docs:
|
||||||
|
fout.write(str(i))
|
||||||
|
fout.write('\n')
|
||||||
|
fout.close()
|
||||||
|
|
||||||
|
|
||||||
def generate_prompt(related_docs: List[str], query: str,
|
def generate_prompt(related_docs: List[str], query: str,
|
||||||
prompt_template=PROMPT_TEMPLATE) -> str:
|
prompt_template=PROMPT_TEMPLATE) -> str:
|
||||||
context = "\n".join([doc.page_content for doc in related_docs])
|
context = "\n".join([doc.page_content for doc in related_docs])
|
||||||
|
|
|
||||||
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 7.9 KiB |
|
|
@ -0,0 +1,2 @@
|
||||||
|
from .image_loader import UnstructuredPaddleImageLoader
|
||||||
|
from .pdf_loader import UnstructuredPaddlePDFLoader
|
||||||
|
|
@ -0,0 +1,28 @@
|
||||||
|
"""Loader that loads image files."""
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from langchain.document_loaders.unstructured import UnstructuredFileLoader
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class UnstructuredPaddleImageLoader(UnstructuredFileLoader):
|
||||||
|
"""Loader that uses unstructured to load image files, such as PNGs and JPGs."""
|
||||||
|
|
||||||
|
def _get_elements(self) -> List:
|
||||||
|
def image_ocr_txt(filepath, dir_path="tmp_files"):
|
||||||
|
if not os.path.exists(dir_path):
|
||||||
|
os.makedirs(dir_path)
|
||||||
|
filename = os.path.split(filepath)[-1]
|
||||||
|
ocr = PaddleOCR(lang="ch", use_gpu=False, show_log=False)
|
||||||
|
result = ocr.ocr(img=filepath)
|
||||||
|
|
||||||
|
ocr_result = [i[1][0] for line in result for i in line]
|
||||||
|
txt_file_path = os.path.join(dir_path, "%s.txt" % (filename))
|
||||||
|
with open(txt_file_path, 'w', encoding='utf-8') as fout:
|
||||||
|
fout.write("\n".join(ocr_result))
|
||||||
|
return txt_file_path
|
||||||
|
|
||||||
|
txt_file_path = image_ocr_txt(self.file_path)
|
||||||
|
from unstructured.partition.text import partition_text
|
||||||
|
return partition_text(filename=txt_file_path, **self.unstructured_kwargs)
|
||||||
|
|
@ -0,0 +1,44 @@
|
||||||
|
"""Loader that loads image files."""
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from langchain.document_loaders.unstructured import UnstructuredFileLoader
|
||||||
|
from paddleocr import PaddleOCR
|
||||||
|
import os
|
||||||
|
import fitz
|
||||||
|
|
||||||
|
|
||||||
|
class UnstructuredPaddlePDFLoader(UnstructuredFileLoader):
|
||||||
|
"""Loader that uses unstructured to load image files, such as PNGs and JPGs."""
|
||||||
|
|
||||||
|
def _get_elements(self) -> List:
|
||||||
|
def pdf_ocr_txt(filepath, dir_path="tmp_files"):
|
||||||
|
if not os.path.exists(dir_path):
|
||||||
|
os.makedirs(dir_path)
|
||||||
|
filename = os.path.split(filepath)[-1]
|
||||||
|
ocr = PaddleOCR(lang="ch", use_gpu=False, show_log=False)
|
||||||
|
doc = fitz.open(filepath)
|
||||||
|
txt_file_path = os.path.join(dir_path, "%s.txt" % (filename))
|
||||||
|
img_name = './img/.tmp.png'
|
||||||
|
with open(txt_file_path, 'w', encoding='utf-8') as fout:
|
||||||
|
|
||||||
|
for i in range(doc.page_count):
|
||||||
|
page = doc[i]
|
||||||
|
text = page.get_text("")
|
||||||
|
fout.write(text)
|
||||||
|
fout.write("\n")
|
||||||
|
|
||||||
|
img_list = page.get_images()
|
||||||
|
for img in img_list:
|
||||||
|
pix = fitz.Pixmap(doc, img[0])
|
||||||
|
|
||||||
|
pix.save(img_name)
|
||||||
|
|
||||||
|
result = ocr.ocr(img_name)
|
||||||
|
ocr_result = [i[1][0] for line in result for i in line]
|
||||||
|
fout.write("\n".join(ocr_result))
|
||||||
|
os.remove(img_name)
|
||||||
|
return txt_file_path
|
||||||
|
|
||||||
|
txt_file_path = pdf_ocr_txt(self.file_path)
|
||||||
|
from unstructured.partition.text import partition_text
|
||||||
|
return partition_text(filename=txt_file_path, **self.unstructured_kwargs)
|
||||||
|
|
@ -1,3 +1,6 @@
|
||||||
|
pymupdf
|
||||||
|
paddlepaddle==2.4.2
|
||||||
|
paddleocr
|
||||||
langchain==0.0.146
|
langchain==0.0.146
|
||||||
transformers==4.27.1
|
transformers==4.27.1
|
||||||
unstructured[local-inference]
|
unstructured[local-inference]
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,12 @@
|
||||||
|
from configs.model_config import *
|
||||||
|
import nltk
|
||||||
|
|
||||||
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
||||||
|
|
||||||
|
filepath = "./img/test.jpg"
|
||||||
|
from loader import UnstructuredPaddleImageLoader
|
||||||
|
|
||||||
|
loader = UnstructuredPaddleImageLoader(filepath, mode="elements")
|
||||||
|
docs = loader.load()
|
||||||
|
for doc in docs:
|
||||||
|
print(doc)
|
||||||
|
|
@ -0,0 +1,12 @@
|
||||||
|
from configs.model_config import *
|
||||||
|
import nltk
|
||||||
|
|
||||||
|
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
||||||
|
|
||||||
|
filepath = "docs/test.pdf"
|
||||||
|
from loader import UnstructuredPaddlePDFLoader
|
||||||
|
|
||||||
|
loader = UnstructuredPaddlePDFLoader(filepath, mode="elements")
|
||||||
|
docs = loader.load()
|
||||||
|
for doc in docs:
|
||||||
|
print(doc)
|
||||||
Loading…
Reference in New Issue