update master
This commit is contained in:
parent
f539766e8f
commit
bbfb599412
|
|
@ -1,71 +0,0 @@
|
|||
from abc import ABC
|
||||
from langchain.llms.base import LLM
|
||||
from typing import Optional, List
|
||||
from models.loader import LoaderCheckPoint
|
||||
from models.base import (BaseAnswer,
|
||||
AnswerResult)
|
||||
|
||||
class BaichuanLLMChain(BaseAnswer, LLM, ABC):
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.01
|
||||
top_p = 0.9
|
||||
checkPoint: LoaderCheckPoint = None
|
||||
# history = []
|
||||
history_len: int = 10
|
||||
|
||||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||||
super().__init__()
|
||||
self.checkPoint = checkPoint
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "BaichuanLLMChain"
|
||||
|
||||
@property
|
||||
def _check_point(self) -> LoaderCheckPoint:
|
||||
return self.checkPoint
|
||||
|
||||
@property
|
||||
def _history_len(self) -> int:
|
||||
return self.history_len
|
||||
|
||||
def set_history_len(self, history_len: int = 10) -> None:
|
||||
self.history_len = history_len
|
||||
|
||||
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
||||
print(f"__call:{prompt}")
|
||||
response, _ = self.checkPoint.model.chat(
|
||||
self.checkPoint.tokenizer,
|
||||
prompt,
|
||||
# history=[],
|
||||
# max_length=self.max_token,
|
||||
# temperature=self.temperature
|
||||
)
|
||||
print(f"response:{response}")
|
||||
print(f"+++++++++++++++++++++++++++++++++++")
|
||||
return response
|
||||
|
||||
def _generate_answer(self, prompt: str,
|
||||
history: List[List[str]] = [],
|
||||
streaming: bool = False):
|
||||
messages = []
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
if streaming:
|
||||
for inum, stream_resp in enumerate(self.checkPoint.model.chat(
|
||||
self.checkPoint.tokenizer,
|
||||
messages,
|
||||
stream=True
|
||||
)):
|
||||
self.checkPoint.clear_torch_cache()
|
||||
answer_result = AnswerResult()
|
||||
answer_result.llm_output = {"answer": stream_resp}
|
||||
yield answer_result
|
||||
else:
|
||||
response = self.checkPoint.model.chat(
|
||||
self.checkPoint.tokenizer,
|
||||
messages
|
||||
)
|
||||
self.checkPoint.clear_torch_cache()
|
||||
answer_result = AnswerResult()
|
||||
answer_result.llm_output = {"answer": response}
|
||||
yield answer_result
|
||||
|
|
@ -1,143 +0,0 @@
|
|||
|
||||
from abc import ABC
|
||||
from typing import Any, Dict, Generator, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from transformers.generation.logits_process import LogitsProcessor
|
||||
from transformers.generation.utils import (LogitsProcessorList,
|
||||
StoppingCriteriaList)
|
||||
|
||||
from models.base import (AnswerResult,
|
||||
AnswerResultStream, BaseAnswer)
|
||||
from models.loader import LoaderCheckPoint
|
||||
|
||||
|
||||
class ChatGLMCppLLMChain(BaseAnswer, Chain, ABC):
|
||||
checkPoint: LoaderCheckPoint = None
|
||||
streaming_key: str = "streaming" #: :meta private:
|
||||
history_key: str = "history" #: :meta private:
|
||||
prompt_key: str = "prompt" #: :meta private:
|
||||
output_key: str = "answer_result_stream" #: :meta private:
|
||||
|
||||
max_length = 2048
|
||||
max_context_length = 512
|
||||
do_sample = True
|
||||
top_k = 0
|
||||
top_p = 0.7
|
||||
temperature = 0.95
|
||||
num_threads = 0
|
||||
|
||||
def __init__(self, checkPoint: LoaderCheckPoint = None):
|
||||
super().__init__()
|
||||
self.checkPoint = checkPoint
|
||||
|
||||
@property
|
||||
def _chain_type(self) -> str:
|
||||
return "ChatglmCppLLMChain"
|
||||
|
||||
@property
|
||||
def input_keys(self) -> List[str]:
|
||||
"""Will be whatever keys the prompt expects.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.prompt_key]
|
||||
|
||||
@property
|
||||
def output_keys(self) -> List[str]:
|
||||
"""Will always return text key.
|
||||
|
||||
:meta private:
|
||||
"""
|
||||
return [self.output_key]
|
||||
|
||||
@property
|
||||
def _check_point(self) -> LoaderCheckPoint:
|
||||
return self.checkPoint
|
||||
|
||||
def encode(self, prompt, truncation_length=None):
|
||||
input_ids = self.checkPoint.tokenizer.encode(str(prompt))
|
||||
return input_ids
|
||||
|
||||
def decode(self, output_ids):
|
||||
reply = self.checkPoint.tokenizer.decode(output_ids)
|
||||
return reply
|
||||
|
||||
def _call(
|
||||
self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
) -> Dict[str, Generator]:
|
||||
generator = self.generatorAnswer(inputs=inputs, run_manager=run_manager)
|
||||
return {self.output_key: generator}
|
||||
|
||||
def _generate_answer(self,
|
||||
inputs: Dict[str, Any],
|
||||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||||
generate_with_callback: AnswerResultStream = None) -> None:
|
||||
|
||||
history = inputs[self.history_key]
|
||||
streaming = inputs[self.streaming_key]
|
||||
prompt = inputs[self.prompt_key]
|
||||
print(f"__call:{prompt}")
|
||||
|
||||
if prompt == "clear":
|
||||
history=[]
|
||||
|
||||
local_history = []
|
||||
|
||||
if not history:
|
||||
history =[]
|
||||
|
||||
for k,v in history:
|
||||
if k:
|
||||
local_history.append(k)
|
||||
local_history.append(v)
|
||||
|
||||
local_history.append(prompt)
|
||||
|
||||
if streaming:
|
||||
history += [[]]
|
||||
pieces = []
|
||||
print(f"++++++++++++++Stream++++++++++++++++++++")
|
||||
for piece in self.checkPoint.model.stream_chat(
|
||||
local_history,
|
||||
max_length=self.max_length,
|
||||
max_context_length=self.max_context_length,
|
||||
do_sample=self.temperature > 0,
|
||||
top_k=self.top_k,
|
||||
top_p=self.top_p,
|
||||
temperature=self.temperature,
|
||||
):
|
||||
pieces.append(piece)
|
||||
reply = ''.join(pieces)
|
||||
print(f"{piece}",end='')
|
||||
|
||||
answer_result = AnswerResult()
|
||||
history[-1] = [prompt, reply]
|
||||
answer_result.history = history
|
||||
answer_result.llm_output = {"answer": reply}
|
||||
generate_with_callback(answer_result)
|
||||
print("")
|
||||
else :
|
||||
reply = self.checkPoint.model.chat(
|
||||
local_history,
|
||||
max_length=self.max_length,
|
||||
max_context_length=self.max_context_length,
|
||||
do_sample=self.temperature > 0,
|
||||
top_k=self.top_k,
|
||||
top_p=self.top_p,
|
||||
temperature=self.temperature,
|
||||
)
|
||||
|
||||
print(f"response:{reply}")
|
||||
print(f"+++++++++++++++++++++++++++++++++++")
|
||||
|
||||
answer_result = AnswerResult()
|
||||
history.append([prompt, reply])
|
||||
answer_result.history = history
|
||||
answer_result.llm_output = {"answer": reply}
|
||||
generate_with_callback(answer_result)
|
||||
Loading…
Reference in New Issue