fix:使用在线embedding模型时 报错 There is no current event loop in thread 'Any… (#2393)
* fix:使用在线embedding模型时 报错 There is no current event loop in thread 'AnyIO worker thread' * 动态配置在线embbding模型 --------- Co-authored-by: fangkeke <3339698829@qq.com>
This commit is contained in:
parent
bba4754994
commit
c1a32d9f1a
|
|
@ -96,6 +96,7 @@ ONLINE_LLM_MODEL = {
|
|||
"version": "qwen-turbo", # 可选包括 "qwen-turbo", "qwen-plus"
|
||||
"api_key": "", # 请在阿里云控制台模型服务灵积API-KEY管理页面创建
|
||||
"provider": "QwenWorker",
|
||||
"embed_model": "text-embedding-v1" # embedding 模型名称
|
||||
},
|
||||
|
||||
# 百川 API,申请方式请参考 https://www.baichuan-ai.com/home#api-enter
|
||||
|
|
|
|||
|
|
@ -5,32 +5,32 @@ from server.utils import BaseResponse, get_model_worker_config, list_embed_model
|
|||
from fastapi import Body
|
||||
from typing import Dict, List
|
||||
|
||||
|
||||
online_embed_models = list_online_embed_models()
|
||||
|
||||
|
||||
def embed_texts(
|
||||
texts: List[str],
|
||||
embed_model: str = EMBEDDING_MODEL,
|
||||
to_query: bool = False,
|
||||
texts: List[str],
|
||||
embed_model: str = EMBEDDING_MODEL,
|
||||
to_query: bool = False,
|
||||
) -> BaseResponse:
|
||||
'''
|
||||
对文本进行向量化。返回数据格式:BaseResponse(data=List[List[float]])
|
||||
TODO: 也许需要加入缓存机制,减少 token 消耗
|
||||
'''
|
||||
try:
|
||||
if embed_model in list_embed_models(): # 使用本地Embeddings模型
|
||||
if embed_model in list_embed_models(): # 使用本地Embeddings模型
|
||||
from server.utils import load_local_embeddings
|
||||
|
||||
embeddings = load_local_embeddings(model=embed_model)
|
||||
return BaseResponse(data=embeddings.embed_documents(texts))
|
||||
|
||||
if embed_model in list_online_embed_models(): # 使用在线API
|
||||
if embed_model in list_online_embed_models(): # 使用在线API
|
||||
config = get_model_worker_config(embed_model)
|
||||
worker_class = config.get("worker_class")
|
||||
embed_model = config.get("embed_model")
|
||||
worker = worker_class()
|
||||
if worker_class.can_embedding():
|
||||
params = ApiEmbeddingsParams(texts=texts, to_query=to_query)
|
||||
params = ApiEmbeddingsParams(texts=texts, to_query=to_query, embed_model=embed_model)
|
||||
resp = worker.do_embeddings(params)
|
||||
return BaseResponse(**resp)
|
||||
|
||||
|
|
@ -39,10 +39,12 @@ def embed_texts(
|
|||
logger.error(e)
|
||||
return BaseResponse(code=500, msg=f"文本向量化过程中出现错误:{e}")
|
||||
|
||||
|
||||
def embed_texts_endpoint(
|
||||
texts: List[str] = Body(..., description="要嵌入的文本列表", examples=[["hello", "world"]]),
|
||||
embed_model: str = Body(EMBEDDING_MODEL, description=f"使用的嵌入模型,除了本地部署的Embedding模型,也支持在线API({online_embed_models})提供的嵌入服务。"),
|
||||
to_query: bool = Body(False, description="向量是否用于查询。有些模型如Minimax对存储/查询的向量进行了区分优化。"),
|
||||
texts: List[str] = Body(..., description="要嵌入的文本列表", examples=[["hello", "world"]]),
|
||||
embed_model: str = Body(EMBEDDING_MODEL,
|
||||
description=f"使用的嵌入模型,除了本地部署的Embedding模型,也支持在线API({online_embed_models})提供的嵌入服务。"),
|
||||
to_query: bool = Body(False, description="向量是否用于查询。有些模型如Minimax对存储/查询的向量进行了区分优化。"),
|
||||
) -> BaseResponse:
|
||||
'''
|
||||
对文本进行向量化,返回 BaseResponse(data=List[List[float]])
|
||||
|
|
@ -51,9 +53,9 @@ def embed_texts_endpoint(
|
|||
|
||||
|
||||
def embed_documents(
|
||||
docs: List[Document],
|
||||
embed_model: str = EMBEDDING_MODEL,
|
||||
to_query: bool = False,
|
||||
docs: List[Document],
|
||||
embed_model: str = EMBEDDING_MODEL,
|
||||
to_query: bool = False,
|
||||
) -> Dict:
|
||||
"""
|
||||
将 List[Document] 向量化,转化为 VectorStore.add_embeddings 可以接受的参数
|
||||
|
|
|
|||
|
|
@ -113,6 +113,9 @@ class ApiModelWorker(BaseModelWorker):
|
|||
sys.stdout = sys.__stdout__
|
||||
sys.stderr = sys.__stderr__
|
||||
|
||||
new_loop = asyncio.new_event_loop()
|
||||
asyncio.set_event_loop(new_loop)
|
||||
|
||||
self.context_len = context_len
|
||||
self.semaphore = asyncio.Semaphore(self.limit_worker_concurrency)
|
||||
self.version = None
|
||||
|
|
|
|||
Loading…
Reference in New Issue