diff --git a/configs/prompt_config.py.example b/configs/prompt_config.py.example
index 130d21c..6fb6996 100644
--- a/configs/prompt_config.py.example
+++ b/configs/prompt_config.py.example
@@ -48,7 +48,7 @@ PROMPT_TEMPLATES = {
'<已知信息>{{ context }}已知信息>\n'
'<问题>{{ question }}问题>\n',
- "Empty": # 搜不到知识库的时候使用
+ "empty": # 搜不到知识库的时候使用
'请你回答我的问题:\n'
'{{ question }}\n\n',
},
diff --git a/server/chat/knowledge_base_chat.py b/server/chat/knowledge_base_chat.py
index b82e1c0..cd0aca3 100644
--- a/server/chat/knowledge_base_chat.py
+++ b/server/chat/knowledge_base_chat.py
@@ -18,36 +18,49 @@ from server.knowledge_base.kb_doc_api import search_docs
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]),
- knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
- top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
- score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=2),
- history: List[History] = Body([],
- description="历史对话",
- examples=[[
- {"role": "user",
- "content": "我们来玩成语接龙,我先来,生龙活虎"},
- {"role": "assistant",
- "content": "虎头虎脑"}]]
- ),
- stream: bool = Body(False, description="流式输出"),
- model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
- temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
- max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
- prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
- request: Request = None,
- ):
+ knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
+ top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
+ score_threshold: float = Body(
+ SCORE_THRESHOLD,
+ description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右",
+ ge=0,
+ le=2
+ ),
+ history: List[History] = Body(
+ [],
+ description="历史对话",
+ examples=[[
+ {"role": "user",
+ "content": "我们来玩成语接龙,我先来,生龙活虎"},
+ {"role": "assistant",
+ "content": "虎头虎脑"}]]
+ ),
+ stream: bool = Body(False, description="流式输出"),
+ model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
+ temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
+ max_tokens: Optional[int] = Body(
+ None,
+ description="限制LLM生成Token数量,默认None代表模型最大值"
+ ),
+ prompt_name: str = Body(
+ "default",
+ description="使用的prompt模板名称(在configs/prompt_config.py中配置)"
+ ),
+ request: Request = None,
+ ):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
history = [History.from_data(h) for h in history]
- async def knowledge_base_chat_iterator(query: str,
- top_k: int,
- history: Optional[List[History]],
- model_name: str = LLM_MODELS[0],
- prompt_name: str = prompt_name,
- ) -> AsyncIterable[str]:
+ async def knowledge_base_chat_iterator(
+ query: str,
+ top_k: int,
+ history: Optional[List[History]],
+ model_name: str = LLM_MODELS[0],
+ prompt_name: str = prompt_name,
+ ) -> AsyncIterable[str]:
nonlocal max_tokens
callback = AsyncIteratorCallbackHandler()
if isinstance(max_tokens, int) and max_tokens <= 0:
@@ -61,8 +74,8 @@ async def knowledge_base_chat(query: str = Body(..., description="用户输入",
)
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
context = "\n".join([doc.page_content for doc in docs])
- if len(docs) == 0: ## 如果没有找到相关文档,使用Empty模板
- prompt_template = get_prompt_template("knowledge_base_chat", "Empty")
+ if len(docs) == 0: # 如果没有找到相关文档,使用empty模板
+ prompt_template = get_prompt_template("knowledge_base_chat", "empty")
else:
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name)
input_msg = History(role="user", content=prompt_template).to_msg_template(False)
@@ -80,14 +93,14 @@ async def knowledge_base_chat(query: str = Body(..., description="用户输入",
source_documents = []
for inum, doc in enumerate(docs):
filename = doc.metadata.get("source")
- parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename})
+ parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename})
base_url = request.base_url
url = f"{base_url}knowledge_base/download_doc?" + parameters
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n"""
source_documents.append(text)
- if len(source_documents) == 0: # 没有找到相关文档
- source_documents.append(f"""未找到相关文档,该回答为大模型自身能力解答!""")
+ if len(source_documents) == 0: # 没有找到相关文档
+ source_documents.append(f"未找到相关文档,该回答为大模型自身能力解答!")
if stream:
async for token in callback.aiter():
@@ -108,4 +121,4 @@ async def knowledge_base_chat(query: str = Body(..., description="用户输入",
history=history,
model_name=model_name,
prompt_name=prompt_name),
- media_type="text/event-stream")
\ No newline at end of file
+ media_type="text/event-stream")