diff --git a/configs/prompt_config.py.example b/configs/prompt_config.py.example index 130d21c..6fb6996 100644 --- a/configs/prompt_config.py.example +++ b/configs/prompt_config.py.example @@ -48,7 +48,7 @@ PROMPT_TEMPLATES = { '<已知信息>{{ context }}\n' '<问题>{{ question }}\n', - "Empty": # 搜不到知识库的时候使用 + "empty": # 搜不到知识库的时候使用 '请你回答我的问题:\n' '{{ question }}\n\n', }, diff --git a/server/chat/knowledge_base_chat.py b/server/chat/knowledge_base_chat.py index b82e1c0..cd0aca3 100644 --- a/server/chat/knowledge_base_chat.py +++ b/server/chat/knowledge_base_chat.py @@ -18,36 +18,49 @@ from server.knowledge_base.kb_doc_api import search_docs async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]), - knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), - top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), - score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=2), - history: List[History] = Body([], - description="历史对话", - examples=[[ - {"role": "user", - "content": "我们来玩成语接龙,我先来,生龙活虎"}, - {"role": "assistant", - "content": "虎头虎脑"}]] - ), - stream: bool = Body(False, description="流式输出"), - model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), - temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), - max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"), - prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"), - request: Request = None, - ): + knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), + top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), + score_threshold: float = Body( + SCORE_THRESHOLD, + description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", + ge=0, + le=2 + ), + history: List[History] = Body( + [], + description="历史对话", + examples=[[ + {"role": "user", + "content": "我们来玩成语接龙,我先来,生龙活虎"}, + {"role": "assistant", + "content": "虎头虎脑"}]] + ), + stream: bool = Body(False, description="流式输出"), + model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), + temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), + max_tokens: Optional[int] = Body( + None, + description="限制LLM生成Token数量,默认None代表模型最大值" + ), + prompt_name: str = Body( + "default", + description="使用的prompt模板名称(在configs/prompt_config.py中配置)" + ), + request: Request = None, + ): kb = KBServiceFactory.get_service_by_name(knowledge_base_name) if kb is None: return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") history = [History.from_data(h) for h in history] - async def knowledge_base_chat_iterator(query: str, - top_k: int, - history: Optional[List[History]], - model_name: str = LLM_MODELS[0], - prompt_name: str = prompt_name, - ) -> AsyncIterable[str]: + async def knowledge_base_chat_iterator( + query: str, + top_k: int, + history: Optional[List[History]], + model_name: str = LLM_MODELS[0], + prompt_name: str = prompt_name, + ) -> AsyncIterable[str]: nonlocal max_tokens callback = AsyncIteratorCallbackHandler() if isinstance(max_tokens, int) and max_tokens <= 0: @@ -61,8 +74,8 @@ async def knowledge_base_chat(query: str = Body(..., description="用户输入", ) docs = search_docs(query, knowledge_base_name, top_k, score_threshold) context = "\n".join([doc.page_content for doc in docs]) - if len(docs) == 0: ## 如果没有找到相关文档,使用Empty模板 - prompt_template = get_prompt_template("knowledge_base_chat", "Empty") + if len(docs) == 0: # 如果没有找到相关文档,使用empty模板 + prompt_template = get_prompt_template("knowledge_base_chat", "empty") else: prompt_template = get_prompt_template("knowledge_base_chat", prompt_name) input_msg = History(role="user", content=prompt_template).to_msg_template(False) @@ -80,14 +93,14 @@ async def knowledge_base_chat(query: str = Body(..., description="用户输入", source_documents = [] for inum, doc in enumerate(docs): filename = doc.metadata.get("source") - parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename}) + parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename}) base_url = request.base_url url = f"{base_url}knowledge_base/download_doc?" + parameters text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n""" source_documents.append(text) - if len(source_documents) == 0: # 没有找到相关文档 - source_documents.append(f"""未找到相关文档,该回答为大模型自身能力解答!""") + if len(source_documents) == 0: # 没有找到相关文档 + source_documents.append(f"未找到相关文档,该回答为大模型自身能力解答!") if stream: async for token in callback.aiter(): @@ -108,4 +121,4 @@ async def knowledge_base_chat(query: str = Body(..., description="用户输入", history=history, model_name=model_name, prompt_name=prompt_name), - media_type="text/event-stream") \ No newline at end of file + media_type="text/event-stream")