use multiprocessing to run fastchat server

This commit is contained in:
liunux4odoo 2023-07-29 23:01:24 +08:00
parent 829ced398b
commit c880412300
1 changed files with 190 additions and 29 deletions

View File

@ -1,17 +1,163 @@
import subprocess
from multiprocessing import Process, Queue
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import llm_model_dict, LLM_MODEL, LOG_PATH, logger
def execute_command(command):
process = subprocess.Popen(command, shell=True)
return process.pid
from configs.model_config import llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, logger
import asyncio
host_ip = "0.0.0.0"
port = 8887
controller_port = 20001
model_worker_port = 20002
openai_api_port = 8888
base_url = "http://127.0.0.1:{}"
queue = Queue()
def set_httpx_timeout(timeout=60.0):
import httpx
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
def create_controller_app(
dispatch_method="shortest_queue",
):
from fastchat.serve.controller import app, Controller
from loguru import logger
logger.add(os.path.join(LOG_PATH, "controller.log"), level="INFO")
controller = Controller(dispatch_method)
sys.modules["fastchat.serve.controller"].controller = controller
sys.modules["fastchat.serve.controller"].logger = logger
logger.info(f"controller dispatch method: {dispatch_method}")
return app
def create_model_worker_app(
model_path=llm_model_dict[LLM_MODEL].get("local_model_path"),
model_names=[LLM_MODEL],
device=LLM_DEVICE,
load_8bit=False,
gptq_ckpt=None,
gptq_wbits=16,
gpus=None,
num_gpus=1,
max_gpu_memory=None,
cpu_offloading=None,
worker_address=base_url.format(model_worker_port),
controller_address=base_url.format(controller_port),
limit_model_concurrency=5,
stream_interval=2,
no_register=False,
):
from fastchat.serve.model_worker import app, GptqConfig, ModelWorker, worker_id
from fastchat.serve import model_worker
from loguru import logger
logger.add(os.path.join(LOG_PATH, "model_worker.log"), level="INFO")
if gpus and num_gpus is None:
num_gpus = len(gpus.split(','))
gptq_config = GptqConfig(
ckpt=gptq_ckpt or model_path,
wbits=gptq_wbits,
groupsize=-1,
act_order=None,
)
worker = ModelWorker(
controller_address,
worker_address,
worker_id,
no_register,
model_path,
model_names,
device,
num_gpus,
max_gpu_memory,
load_8bit,
cpu_offloading,
gptq_config,
)
sys.modules["fastchat.serve.model_worker"].worker = worker
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
sys.modules["fastchat.serve.model_worker"].logger = logger
return app
def create_openai_api_app(
host=host_ip,
port=openai_api_port,
controller_address=base_url.format(controller_port),
api_keys=[],
):
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
from loguru import logger
logger.add(os.path.join(LOG_PATH, "openai_api.log"), level="INFO")
app.add_middleware(
CORSMiddleware,
allow_credentials=True,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app_settings.controller_address = controller_address
app_settings.api_keys = api_keys
sys.modules["fastchat.serve.openai_api_server"].logger = logger
return app
def run_controller(q):
import uvicorn
app = create_controller_app()
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
q.put(1)
uvicorn.run(app, host=host_ip, port=controller_port)
def run_model_worker(q):
import uvicorn
app = create_model_worker_app()
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
while True:
no = q.get()
if no != 1:
q.put(no)
else:
break
q.put(2)
uvicorn.run(app, host=host_ip, port=model_worker_port)
def run_openai_api(q):
import uvicorn
app = create_openai_api_app()
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
while True:
no = q.get()
if no != 2:
q.put(no)
else:
break
q.put(3)
uvicorn.run(app, host=host_ip, port=openai_api_port)
# 1. llm_model_dict精简
# 2. 不同任务的日志还是分开;
@ -24,31 +170,46 @@ port = 8887
# 6. requirements指定fastchat版本号。
print(llm_model_dict[LLM_MODEL])
model_path = llm_model_dict[LLM_MODEL]["local_model_path"]
if not model_path:
logger.error("local_model_path 不能为空")
else:
# 启动任务
command1 = f'nohup python -m fastchat.serve.controller >> {LOG_PATH}/controller_log.txt 2>&1 &'
process1 = execute_command(command1)
logger.info(f"已执行 {command1}")
logger.info(f"Process 1 started with PID: {process1}")
if __name__ == "__main__":
logger.info(llm_model_dict[LLM_MODEL])
model_path = llm_model_dict[LLM_MODEL]["local_model_path"]
model_path = "d:\\chatglm\\models\\chatglm-6b"
command2 = f'nohup python -m fastchat.serve.model_worker --model-path "{model_path}" --device cuda >> {LOG_PATH}/worker_log.txt 2>&1 &'
process2 = execute_command(command2)
logger.info(f"已执行 {command2}")
logger.info(f"Process 2 started with PID: {process2}")
command3 = f'nohup python -m fastchat.serve.openai_api_server --host "{host_ip}" --port {port} >> {LOG_PATH}/api_log.txt 2>&1 &'
process3 = execute_command(command3)
logger.info(f"已执行 {command3}")
logger.info(f"Process 3 started with PID: {process3}")
# TODO: model_worker.log 与 controller.log 存储位置未指定为 LOG_PATH --> hzg0601model_worker.py,controller.py自行指定的文件写入路径
# TODO(hzg0601): -->而且是写死的如果想修改路径必须修改fastchat的代码
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
if not model_path:
logger.error("local_model_path 不能为空")
else:
controller_process = Process(
target=run_controller,
name=f"controller({os.getpid()})",
args=(queue,),
daemon=True,
)
controller_process.start()
model_worker_process = Process(
target=run_model_worker,
name=f"model_worker({os.getpid()})",
args=(queue,),
daemon=True,
)
model_worker_process.start()
openai_api_process = Process(
target=run_openai_api,
name=f"openai_api({os.getpid()})",
args=(queue,),
daemon=True,
)
openai_api_process.start()
controller_process.join()
model_worker_process.join()
openai_api_process.join()
# 服务启动后接口调用示例:
# import openai
# openai.api_key = "EMPTY" # Not support yet