删除reqirements的中文
This commit is contained in:
commit
cd91290bfb
|
|
@ -27,7 +27,6 @@ EMBEDDING_MODEL = "text2vec"
|
||||||
# Embedding running device
|
# Embedding running device
|
||||||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||||
|
|
||||||
|
|
||||||
# supported LLM models
|
# supported LLM models
|
||||||
# llm_model_dict 处理了loader的一些预设行为,如加载位置,模型名称,模型处理器实例
|
# llm_model_dict 处理了loader的一些预设行为,如加载位置,模型名称,模型处理器实例
|
||||||
# 在以下字典中修改属性值,以指定本地 LLM 模型存储位置
|
# 在以下字典中修改属性值,以指定本地 LLM 模型存储位置
|
||||||
|
|
@ -38,44 +37,113 @@ llm_model_dict = {
|
||||||
"name": "chatglm-6b-int4-qe",
|
"name": "chatglm-6b-int4-qe",
|
||||||
"pretrained_model_name": "THUDM/chatglm-6b-int4-qe",
|
"pretrained_model_name": "THUDM/chatglm-6b-int4-qe",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "ChatGLM"
|
"provides": "ChatGLMLLMChain"
|
||||||
},
|
},
|
||||||
"chatglm-6b-int4": {
|
"chatglm-6b-int4": {
|
||||||
"name": "chatglm-6b-int4",
|
"name": "chatglm-6b-int4",
|
||||||
"pretrained_model_name": "THUDM/chatglm-6b-int4",
|
"pretrained_model_name": "THUDM/chatglm-6b-int4",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "ChatGLM"
|
"provides": "ChatGLMLLMChain"
|
||||||
},
|
},
|
||||||
"chatglm-6b-int8": {
|
"chatglm-6b-int8": {
|
||||||
"name": "chatglm-6b-int8",
|
"name": "chatglm-6b-int8",
|
||||||
"pretrained_model_name": "THUDM/chatglm-6b-int8",
|
"pretrained_model_name": "THUDM/chatglm-6b-int8",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "ChatGLM"
|
"provides": "ChatGLMLLMChain"
|
||||||
},
|
},
|
||||||
"chatglm-6b": {
|
"chatglm-6b": {
|
||||||
"name": "chatglm-6b",
|
"name": "chatglm-6b",
|
||||||
"pretrained_model_name": "THUDM/chatglm-6b",
|
"pretrained_model_name": "THUDM/chatglm-6b",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "ChatGLM"
|
"provides": "ChatGLMLLMChain"
|
||||||
|
},
|
||||||
|
"chatglm2-6b": {
|
||||||
|
"name": "chatglm2-6b",
|
||||||
|
"pretrained_model_name": "THUDM/chatglm2-6b",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "ChatGLMLLMChain"
|
||||||
|
},
|
||||||
|
"chatglm2-6b-int4": {
|
||||||
|
"name": "chatglm2-6b-int4",
|
||||||
|
"pretrained_model_name": "THUDM/chatglm2-6b-int4",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "ChatGLMLLMChain"
|
||||||
|
},
|
||||||
|
"chatglm2-6b-int8": {
|
||||||
|
"name": "chatglm2-6b-int8",
|
||||||
|
"pretrained_model_name": "THUDM/chatglm2-6b-int8",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "ChatGLMLLMChain"
|
||||||
},
|
},
|
||||||
|
|
||||||
"chatyuan": {
|
"chatyuan": {
|
||||||
"name": "chatyuan",
|
"name": "chatyuan",
|
||||||
"pretrained_model_name": "ClueAI/ChatYuan-large-v2",
|
"pretrained_model_name": "ClueAI/ChatYuan-large-v2",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": None
|
"provides": "MOSSLLMChain"
|
||||||
},
|
},
|
||||||
"moss": {
|
"moss": {
|
||||||
"name": "moss",
|
"name": "moss",
|
||||||
"pretrained_model_name": "fnlp/moss-moon-003-sft",
|
"pretrained_model_name": "fnlp/moss-moon-003-sft",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
|
"provides": "MOSSLLMChain"
|
||||||
|
},
|
||||||
|
"moss-int4": {
|
||||||
|
"name": "moss",
|
||||||
|
"pretrained_model_name": "fnlp/moss-moon-003-sft-int4",
|
||||||
|
"local_model_path": None,
|
||||||
"provides": "MOSSLLM"
|
"provides": "MOSSLLM"
|
||||||
},
|
},
|
||||||
"vicuna-13b-hf": {
|
"vicuna-13b-hf": {
|
||||||
"name": "vicuna-13b-hf",
|
"name": "vicuna-13b-hf",
|
||||||
"pretrained_model_name": "vicuna-13b-hf",
|
"pretrained_model_name": "vicuna-13b-hf",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "LLamaLLM"
|
"provides": "LLamaLLMChain"
|
||||||
|
},
|
||||||
|
"vicuna-7b-hf": {
|
||||||
|
"name": "vicuna-13b-hf",
|
||||||
|
"pretrained_model_name": "vicuna-13b-hf",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "LLamaLLMChain"
|
||||||
|
},
|
||||||
|
# 直接调用返回requests.exceptions.ConnectionError错误,需要通过huggingface_hub包里的snapshot_download函数
|
||||||
|
# 下载模型,如果snapshot_download还是返回网络错误,多试几次,一般是可以的,
|
||||||
|
# 如果仍然不行,则应该是网络加了防火墙(在服务器上这种情况比较常见),基本只能从别的设备上下载,
|
||||||
|
# 然后转移到目标设备了.
|
||||||
|
"bloomz-7b1": {
|
||||||
|
"name": "bloomz-7b1",
|
||||||
|
"pretrained_model_name": "bigscience/bloomz-7b1",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "MOSSLLMChain"
|
||||||
|
|
||||||
|
},
|
||||||
|
# 实测加载bigscience/bloom-3b需要170秒左右,暂不清楚为什么这么慢
|
||||||
|
# 应与它要加载专有token有关
|
||||||
|
"bloom-3b": {
|
||||||
|
"name": "bloom-3b",
|
||||||
|
"pretrained_model_name": "bigscience/bloom-3b",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "MOSSLLMChain"
|
||||||
|
|
||||||
|
},
|
||||||
|
"baichuan-7b": {
|
||||||
|
"name": "baichuan-7b",
|
||||||
|
"pretrained_model_name": "baichuan-inc/baichuan-7B",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "MOSSLLMChain"
|
||||||
|
},
|
||||||
|
# llama-cpp模型的兼容性问题参考https://github.com/abetlen/llama-cpp-python/issues/204
|
||||||
|
"ggml-vicuna-13b-1.1-q5": {
|
||||||
|
"name": "ggml-vicuna-13b-1.1-q5",
|
||||||
|
"pretrained_model_name": "lmsys/vicuna-13b-delta-v1.1",
|
||||||
|
# 这里需要下载好模型的路径,如果下载模型是默认路径则它会下载到用户工作区的
|
||||||
|
# /.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/
|
||||||
|
# 还有就是由于本项目加载模型的方式设置的比较严格,下载完成后仍需手动修改模型的文件名
|
||||||
|
# 将其设置为与Huggface Hub一致的文件名
|
||||||
|
# 此外不同时期的ggml格式并不兼容,因此不同时期的ggml需要安装不同的llama-cpp-python库,且实测pip install 不好使
|
||||||
|
# 需要手动从https://github.com/abetlen/llama-cpp-python/releases/tag/下载对应的wheel安装
|
||||||
|
# 实测v0.1.63与本模型的vicuna/ggml-vicuna-13b-1.1/ggml-vic13b-q5_1.bin可以兼容
|
||||||
|
"local_model_path": f'''{"/".join(os.path.abspath(__file__).split("/")[:3])}/.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/blobs/''',
|
||||||
|
"provides": "LLamaLLMChain"
|
||||||
},
|
},
|
||||||
|
|
||||||
# 通过 fastchat 调用的模型请参考如下格式
|
# 通过 fastchat 调用的模型请参考如下格式
|
||||||
|
|
@ -83,7 +151,24 @@ llm_model_dict = {
|
||||||
"name": "chatglm-6b", # "name"修改为fastchat服务中的"model_name"
|
"name": "chatglm-6b", # "name"修改为fastchat服务中的"model_name"
|
||||||
"pretrained_model_name": "chatglm-6b",
|
"pretrained_model_name": "chatglm-6b",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
|
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||||||
|
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||||
|
"api_key": "EMPTY"
|
||||||
|
},
|
||||||
|
# 通过 fastchat 调用的模型请参考如下格式
|
||||||
|
"fastchat-chatglm-6b-int4": {
|
||||||
|
"name": "chatglm-6b-int4", # "name"修改为fastchat服务中的"model_name"
|
||||||
|
"pretrained_model_name": "chatglm-6b-int4",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||||||
|
"api_base_url": "http://localhost:8001/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||||
|
"api_key": "EMPTY"
|
||||||
|
},
|
||||||
|
"fastchat-chatglm2-6b": {
|
||||||
|
"name": "chatglm2-6b", # "name"修改为fastchat服务中的"model_name"
|
||||||
|
"pretrained_model_name": "chatglm2-6b",
|
||||||
|
"local_model_path": None,
|
||||||
|
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||||||
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
|
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
|
||||||
},
|
},
|
||||||
|
|
||||||
|
|
@ -92,9 +177,29 @@ llm_model_dict = {
|
||||||
"name": "vicuna-13b-hf", # "name"修改为fastchat服务中的"model_name"
|
"name": "vicuna-13b-hf", # "name"修改为fastchat服务中的"model_name"
|
||||||
"pretrained_model_name": "vicuna-13b-hf",
|
"pretrained_model_name": "vicuna-13b-hf",
|
||||||
"local_model_path": None,
|
"local_model_path": None,
|
||||||
"provides": "FastChatOpenAILLM", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLM"
|
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||||||
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
|
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||||
|
"api_key": "EMPTY"
|
||||||
},
|
},
|
||||||
|
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||||||
|
# Max retries exceeded with url: /v1/chat/completions
|
||||||
|
# 则需要将urllib3版本修改为1.25.11
|
||||||
|
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
|
||||||
|
# 参考https://zhuanlan.zhihu.com/p/350015032
|
||||||
|
|
||||||
|
# 如果报出:raise NewConnectionError(
|
||||||
|
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
|
||||||
|
# Failed to establish a new connection: [WinError 10060]
|
||||||
|
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
|
||||||
|
"openai-chatgpt-3.5": {
|
||||||
|
"name": "gpt-3.5-turbo",
|
||||||
|
"pretrained_model_name": "gpt-3.5-turbo",
|
||||||
|
"provides": "FastChatOpenAILLMChain",
|
||||||
|
"local_model_path": None,
|
||||||
|
"api_base_url": "https://api.openapi.com/v1",
|
||||||
|
"api_key": ""
|
||||||
|
},
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
# LLM 名称
|
# LLM 名称
|
||||||
|
|
@ -116,8 +221,7 @@ STREAMING = True
|
||||||
|
|
||||||
# Use p-tuning-v2 PrefixEncoder
|
# Use p-tuning-v2 PrefixEncoder
|
||||||
USE_PTUNING_V2 = False
|
USE_PTUNING_V2 = False
|
||||||
|
PTUNING_DIR='./ptuning-v2'
|
||||||
PTUNING_DIR = "./ptuning-v2"
|
|
||||||
# LLM running device
|
# LLM running device
|
||||||
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||||
|
|
||||||
|
|
@ -130,7 +234,7 @@ PROMPT_TEMPLATE = """已知信息:
|
||||||
|
|
||||||
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
||||||
|
|
||||||
# 缓存知识库数量
|
# 缓存知识库数量,如果是ChatGLM2,ChatGLM2-int4,ChatGLM2-int8模型若检索效果不好可以调成’10’
|
||||||
CACHED_VS_NUM = 1
|
CACHED_VS_NUM = 1
|
||||||
|
|
||||||
# 文本分句长度
|
# 文本分句长度
|
||||||
|
|
@ -145,8 +249,8 @@ LLM_HISTORY_LEN = 3
|
||||||
# 知识库检索时返回的匹配内容条数
|
# 知识库检索时返回的匹配内容条数
|
||||||
VECTOR_SEARCH_TOP_K = 5
|
VECTOR_SEARCH_TOP_K = 5
|
||||||
|
|
||||||
# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,经测试设置为小于500时,匹配结果更精准
|
# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,建议设置为500左右,经测试设置为小于500时,匹配结果更精准
|
||||||
VECTOR_SEARCH_SCORE_THRESHOLD = 0
|
VECTOR_SEARCH_SCORE_THRESHOLD = 500
|
||||||
|
|
||||||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue