添加向量数据库pg支持,和向量库docker-compose.ym环境文件

This commit is contained in:
zqt 2023-08-10 11:16:52 +08:00
parent f7b2c8cd04
commit d4f728dfa2
11 changed files with 193 additions and 31 deletions

14
configs/config.py Normal file
View File

@ -0,0 +1,14 @@
kbs_config = {
"faiss": {
},
"milvus": {
"host": "127.0.0.1",
"port": "19530",
"user": "",
"password": "",
"secure": False,
},
"pg": {
"connection_uri": "postgresql://postgres:postgres@192.168.50.128:5432/langchain_chatgml",
}
}

View File

@ -149,17 +149,7 @@ BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 是因为服务器加了防火墙需要联系管理员加白名单如果公司的服务器的话就别想了GG # 是因为服务器加了防火墙需要联系管理员加白名单如果公司的服务器的话就别想了GG
BING_SUBSCRIPTION_KEY = "" BING_SUBSCRIPTION_KEY = ""
kbs_config = {
"faiss": {
},
"milvus": {
"host": "127.0.0.1",
"port": "19530",
"user": "",
"password": "",
"secure": False,
}
}
# 是否开启中文标题加强,以及标题增强的相关配置 # 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断判断哪些文本为标题并在metadata中进行标记 # 通过增加标题判断判断哪些文本为标题并在metadata中进行标记

View File

@ -0,0 +1,49 @@
version: '3.5'
services:
etcd:
container_name: milvus-etcd
image: quay.io/coreos/etcd:v3.5.0
environment:
- ETCD_AUTO_COMPACTION_MODE=revision
- ETCD_AUTO_COMPACTION_RETENTION=1000
- ETCD_QUOTA_BACKEND_BYTES=4294967296
- ETCD_SNAPSHOT_COUNT=50000
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd
command: etcd -advertise-client-urls=http://127.0.0.1:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd
minio:
container_name: milvus-minio
image: minio/minio:RELEASE.2022-03-17T06-34-49Z
environment:
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data
command: minio server /minio_data
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]
interval: 30s
timeout: 20s
retries: 3
standalone:
container_name: milvus-standalone
image: milvusdb/milvus:v2.1.3
command: ["milvus", "run", "standalone"]
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO_ADDRESS: minio:9000
volumes:
- ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus
ports:
- "19530:19530"
- "9091:9091"
depends_on:
- "etcd"
- "minio"
networks:
default:
name: milvus

View File

@ -0,0 +1,13 @@
version: "3.8"
services:
postgresql:
image: ankane/pgvector:v0.4.1
container_name: langchain-chatgml-pg-db
environment:
POSTGRES_DB: langchain_chatgml
POSTGRES_USER: postgres
POSTGRES_PASSWORD: postgres
ports:
- 5432:5432
volumes:
- ./data:/var/lib/postgresql/data

View File

@ -0,0 +1,7 @@
向量库环境docker-compose.yml文件在docs/docker/vector_db中
以milvus为例
```shell
cd docs/docker/vector_db/milvus
docker-compose up -d
```

View File

@ -28,3 +28,5 @@ faiss-cpu
pymilvus==2.1.3 # requires milvus==2.1.3 pymilvus==2.1.3 # requires milvus==2.1.3
SQLAlchemy==2.0.19 SQLAlchemy==2.0.19
# psycopg2
# pgvector

View File

@ -1,6 +1,6 @@
from sqlalchemy import Column, Integer, String, DateTime from sqlalchemy import Column, Integer, String, DateTime, func
from server.db.base import Base from server.db.base import Base
from datetime import datetime
class KnowledgeBaseModel(Base): class KnowledgeBaseModel(Base):
@ -12,8 +12,8 @@ class KnowledgeBaseModel(Base):
kb_name = Column(String, comment='知识库名称') kb_name = Column(String, comment='知识库名称')
vs_type = Column(String, comment='嵌入模型类型') vs_type = Column(String, comment='嵌入模型类型')
embed_model = Column(String, comment='嵌入模型名称') embed_model = Column(String, comment='嵌入模型名称')
file_count = Column(Integer, comment='文件数量', default=0) file_count = Column(Integer, default=0, comment='文件数量')
create_time = Column(DateTime, comment='创建时间', default=datetime.now) create_time = Column(DateTime, default=func.now(), comment='创建时间')
def __repr__(self): def __repr__(self):
return f"<KnowledgeBase(id='{self.id}', kb_name='{self.kb_name}', vs_type='{self.vs_type}', embed_model='{self.embed_model}', file_count='{self.file_count}', create_time='{self.create_time}')>" return f"<KnowledgeBase(id='{self.id}', kb_name='{self.kb_name}', vs_type='{self.vs_type}', embed_model='{self.embed_model}', file_count='{self.file_count}', create_time='{self.create_time}')>"

View File

@ -1,6 +1,7 @@
from sqlalchemy import Column, Integer, String, DateTime from sqlalchemy import Column, Integer, String, DateTime, func
from server.db.base import Base from server.db.base import Base
from datetime import datetime
class KnowledgeFileModel(Base): class KnowledgeFileModel(Base):
""" """
@ -13,8 +14,8 @@ class KnowledgeFileModel(Base):
kb_name = Column(String, comment='所属知识库名称') kb_name = Column(String, comment='所属知识库名称')
document_loader_name = Column(String, comment='文档加载器名称') document_loader_name = Column(String, comment='文档加载器名称')
text_splitter_name = Column(String, comment='文本分割器名称') text_splitter_name = Column(String, comment='文本分割器名称')
file_version = Column(Integer, comment='文件版本', default=1) file_version = Column(Integer, default=1, comment='文件版本')
create_time = Column(DateTime, comment='创建时间', default=datetime.now) create_time = Column(DateTime, default=func.now(), comment='创建时间')
def __repr__(self): def __repr__(self):
return f"<KnowledgeFile(id='{self.id}', file_name='{self.file_name}', file_ext='{self.file_ext}', kb_name='{self.kb_name}', document_loader_name='{self.document_loader_name}', text_splitter_name='{self.text_splitter_name}', file_version='{self.file_version}', create_time='{self.create_time}')>" return f"<KnowledgeFile(id='{self.id}', file_name='{self.file_name}', file_ext='{self.file_ext}', kb_name='{self.kb_name}', document_loader_name='{self.document_loader_name}', text_splitter_name='{self.text_splitter_name}', file_version='{self.file_version}', create_time='{self.create_time}')>"

View File

@ -1,3 +1,5 @@
import datetime
from server.db.models.knowledge_base_model import KnowledgeBaseModel from server.db.models.knowledge_base_model import KnowledgeBaseModel
from server.db.models.knowledge_file_model import KnowledgeFileModel from server.db.models.knowledge_file_model import KnowledgeFileModel
from server.db.session import with_session from server.db.session import with_session
@ -20,19 +22,13 @@ def add_doc_to_db(session, kb_file: KnowledgeFile):
kb_name=kb_file.kb_name).first() kb_name=kb_file.kb_name).first()
if existing_file: if existing_file:
existing_file.file_version += 1 existing_file.file_version += 1
session.add(existing_file)
# 否则,添加新文件 # 否则,添加新文件
else: else:
new_file = KnowledgeFileModel( session.add(KnowledgeFileModel(file_name=kb_file.filename,
file_name=kb_file.filename, file_ext=kb_file.ext,
file_ext=kb_file.ext, document_loader_name=kb_file.document_loader_name,
kb_name=kb_file.kb_name, text_splitter_name=kb_file.text_splitter_name
document_loader_name=kb_file.document_loader_name, ))
text_splitter_name=kb_file.text_splitter_name,
)
kb.file_count += 1
session.add(new_file)
session.add(kb)
return True return True

View File

@ -5,10 +5,11 @@ import os
from langchain.embeddings.base import Embeddings from langchain.embeddings.base import Embeddings
from langchain.docstore.document import Document from langchain.docstore.document import Document
from configs.config import kbs_config
from server.db.repository.knowledge_base_repository import add_kb_to_db, delete_kb_from_db, list_kbs_from_db, kb_exists, load_kb_from_db from server.db.repository.knowledge_base_repository import add_kb_to_db, delete_kb_from_db, list_kbs_from_db, kb_exists, load_kb_from_db
from server.db.repository.knowledge_file_repository import add_doc_to_db, delete_file_from_db, doc_exists, \ from server.db.repository.knowledge_file_repository import add_doc_to_db, delete_file_from_db, doc_exists, \
list_docs_from_db list_docs_from_db
from configs.model_config import (DB_ROOT_PATH, kbs_config, VECTOR_SEARCH_TOP_K, from configs.model_config import (DB_ROOT_PATH, VECTOR_SEARCH_TOP_K,
embedding_model_dict, EMBEDDING_DEVICE, EMBEDDING_MODEL) embedding_model_dict, EMBEDDING_DEVICE, EMBEDDING_MODEL)
from server.knowledge_base.utils import (get_kb_path, get_doc_path, load_embeddings, KnowledgeFile) from server.knowledge_base.utils import (get_kb_path, get_doc_path, load_embeddings, KnowledgeFile)
from typing import List, Union from typing import List, Union
@ -18,6 +19,7 @@ class SupportedVSType:
FAISS = 'faiss' FAISS = 'faiss'
MILVUS = 'milvus' MILVUS = 'milvus'
DEFAULT = 'default' DEFAULT = 'default'
PG = 'pg'
class KBService(ABC): class KBService(ABC):
@ -189,6 +191,9 @@ class KBServiceFactory:
if SupportedVSType.FAISS == vector_store_type: if SupportedVSType.FAISS == vector_store_type:
from server.knowledge_base.kb_service.faiss_kb_service import FaissKBService from server.knowledge_base.kb_service.faiss_kb_service import FaissKBService
return FaissKBService(kb_name, embed_model=embed_model) return FaissKBService(kb_name, embed_model=embed_model)
if SupportedVSType.PG == vector_store_type:
from server.knowledge_base.kb_service.pg_kb_service import PGKBService
return PGKBService(kb_name, embed_model=embed_model)
elif SupportedVSType.MILVUS == vector_store_type: elif SupportedVSType.MILVUS == vector_store_type:
from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService from server.knowledge_base.kb_service.milvus_kb_service import MilvusKBService
return MilvusKBService(kb_name, embed_model=embed_model) # other milvus parameters are set in model_config.kbs_config return MilvusKBService(kb_name, embed_model=embed_model) # other milvus parameters are set in model_config.kbs_config

View File

@ -0,0 +1,85 @@
from typing import List
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores import PGVector
from sqlalchemy import text
from configs.config import kbs_config
from configs.model_config import EMBEDDING_DEVICE
from server.knowledge_base.kb_service.base import KBService, load_embeddings, SupportedVSType
from server.knowledge_base.utils import KnowledgeFile
class PGKBService(KBService):
pg_vector: PGVector
def _load_pg_vector(self, embedding_device: str = EMBEDDING_DEVICE, embeddings: Embeddings = None):
_embeddings = embeddings
if _embeddings is None:
_embeddings = load_embeddings(self.embed_model, embedding_device)
self.pg_vector = PGVector(embedding_function=_embeddings,
collection_name=self.kb_name,
connection_string=kbs_config.get("pg").get("connection_uri"))
def do_init(self):
self._load_pg_vector()
def do_create_kb(self):
pass
def vs_type(self) -> str:
return SupportedVSType.PG
def do_drop_kb(self):
with self.pg_vector.connect() as connect:
connect.execute(text(f'''
-- 删除 langchain_pg_embedding 表中关联到 langchain_pg_collection 表中 的记录
DELETE FROM langchain_pg_embedding
WHERE collection_id IN (
SELECT uuid FROM langchain_pg_collection WHERE name = '{self.kb_name}'
);
-- 删除 langchain_pg_collection 表中 记录
DELETE FROM langchain_pg_collection WHERE name = '{self.kb_name}';
'''))
connect.commit()
def do_search(self, query: str, top_k: int, embeddings: Embeddings) -> List[Document]:
self._load_pg_vector(embeddings=embeddings)
return self.pg_vector.similarity_search(query, top_k)
def add_doc(self, kb_file: KnowledgeFile):
"""
向知识库添加文件
"""
docs = kb_file.file2text()
self.pg_vector.add_documents(docs)
from server.db.repository.knowledge_file_repository import add_doc_to_db
status = add_doc_to_db(kb_file)
return status
def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
pass
def do_delete_doc(self, kb_file: KnowledgeFile):
with self.pg_vector.connect() as connect:
filepath = kb_file.filepath.replace('\\', '\\\\')
connect.execute(
text(
''' DELETE FROM langchain_pg_embedding WHERE cmetadata::jsonb @> '{"source": "filepath"}'::jsonb;'''.replace(
"filepath", filepath)))
connect.commit()
def do_clear_vs(self):
self.pg_vector.delete_collection()
if __name__ == '__main__':
from server.db.base import Base, engine
Base.metadata.create_all(bind=engine)
pGKBService = PGKBService("test")
pGKBService.create_kb()
pGKBService.add_doc(KnowledgeFile("test.pdf", "test"))
pGKBService.delete_doc(KnowledgeFile("test.pdf", "test"))
pGKBService.drop_kb()
print(pGKBService.search_docs("测试"))