python3.8用户需要加上__future__ (#1624)

* 增加了仅限GPT4的agent功能,陆续补充,中文版readme已写

* issue提到的一个bug

* 温度最小改成0,但是不应该支持负数

* 修改了最小的温度

* 增加了部分Agent支持和修改了启动文件的部分bug

* 修改了GPU数量配置文件

* 1

1

* 修复配置文件错误

* 更新readme,稳定测试

* 更新readme

* python3.8用户需要加这两行
This commit is contained in:
zR 2023-09-29 16:04:44 +08:00 committed by GitHub
parent 6b1e13a4e2
commit d9056a8df6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 6 additions and 2 deletions

View File

@ -70,6 +70,7 @@ If you want to run the native model (int4 version) on the GPU without problems,
+ LLaMA-30B Minimum Memory Requirement: 22GB Recommended Cards: RTX A5000,RTX 3090,RTX 4090,RTX 6000,Tesla V100,RTX Tesla P40 + LLaMA-30B Minimum Memory Requirement: 22GB Recommended Cards: RTX A5000,RTX 3090,RTX 4090,RTX 6000,Tesla V100,RTX Tesla P40
+ Minimum memory requirement for LLaMA-65B: 40GB Recommended cards: A100,A40,A6000 + Minimum memory requirement for LLaMA-65B: 40GB Recommended cards: A100,A40,A6000
If int8 then memory x1.5 fp16 x2.5 requirement. If int8 then memory x1.5 fp16 x2.5 requirement.
For example: using fp16 to reason about the Qwen-7B-Chat model requires 16GB of video memory. For example: using fp16 to reason about the Qwen-7B-Chat model requires 16GB of video memory.

View File

@ -92,6 +92,7 @@ MODEL_PATH = {
# 选用的 Embedding 名称 # 选用的 Embedding 名称
EMBEDDING_MODEL = "m3e-base" # 可以尝试最新的嵌入式sota模型piccolo-large-zh EMBEDDING_MODEL = "m3e-base" # 可以尝试最新的嵌入式sota模型piccolo-large-zh
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。 # Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
EMBEDDING_DEVICE = "auto" EMBEDDING_DEVICE = "auto"

View File

@ -1,3 +1,4 @@
from __future__ import annotations
from uuid import UUID from uuid import UUID
from langchain.callbacks import AsyncIteratorCallbackHandler from langchain.callbacks import AsyncIteratorCallbackHandler
import json import json

View File

@ -1,3 +1,4 @@
from __future__ import annotations
from langchain.agents import Tool, AgentOutputParser from langchain.agents import Tool, AgentOutputParser
from langchain.prompts import StringPromptTemplate from langchain.prompts import StringPromptTemplate
from typing import List, Union from typing import List, Union