支持昆仑万维天工大模型 (#2166)
--------- Co-authored-by: Eden <chuangqi.huang@ubtrobot.com> Co-authored-by: liunux4odoo <liunux@qq.com>
This commit is contained in:
parent
824c29a6d2
commit
dfcebf7bc3
25
README.md
25
README.md
|
|
@ -5,7 +5,7 @@
|
|||
|
||||
📃 **LangChain-Chatchat** (原 Langchain-ChatGLM)
|
||||
|
||||
基于 Langchain 与 ChatGLM 等大语言模型的本地知识库问答应用实现。
|
||||
基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目。
|
||||
|
||||
---
|
||||
|
||||
|
|
@ -42,21 +42,21 @@
|
|||
|
||||
🚩 本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。
|
||||
|
||||
🌐 [AutoDL 镜像](https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat) 中 `v10` 版本所使用代码已更新至本项目 `v0.2.6` 版本。
|
||||
🌐 [AutoDL 镜像](https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat) 中 `v11` 版本所使用代码已更新至本项目 `v0.2.7` 版本。
|
||||
|
||||
🐳 [Docker 镜像](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.6) 已经更新到 ```0.2.6``` 版本。
|
||||
🐳 [Docker 镜像](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.6) 已经更新到 ```0.2.7``` 版本。
|
||||
|
||||
🌲 一行命令运行 Docker :
|
||||
|
||||
```shell
|
||||
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.6
|
||||
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
|
||||
```
|
||||
|
||||
🧩 本项目有一个非常完整的[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) , README只是一个简单的介绍,__仅仅是入门教程,能够基础运行__。 如果你想要更深入的了解本项目,或者对相对本项目做出共享。请移步 [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) 界面
|
||||
🧩 本项目有一个非常完整的[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) , README只是一个简单的介绍,__仅仅是入门教程,能够基础运行__。 如果你想要更深入的了解本项目,或者想对本项目做出贡献。请移步 [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) 界面
|
||||
|
||||
## 解决的痛点
|
||||
|
||||
该项目是一个可以实现 __完全本地化__推理的知识库增强方案, 重点解决数数据安全保护,私域化部署的企业痛点。
|
||||
该项目是一个可以实现 __完全本地化__推理的知识库增强方案, 重点解决数据安全保护,私域化部署的企业痛点。
|
||||
本开源方案采用```Apache License```,可以免费商用,无需付费。
|
||||
|
||||
我们支持市面上主流的本地大预言模型和Embedding模型,支持开源的本地向量数据库。
|
||||
|
|
@ -67,7 +67,7 @@ docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/ch
|
|||
|
||||
### 1. 环境配置
|
||||
|
||||
+ 首先,确保你的机器安装了 Python 3.10
|
||||
+ 首先,确保你的机器安装了 Python 3.8 - 3.10
|
||||
```
|
||||
$ python --version
|
||||
Python 3.10.12
|
||||
|
|
@ -148,11 +148,12 @@ $ python startup.py -a
|
|||
[](https://t.me/+RjliQ3jnJ1YyN2E9)
|
||||
|
||||
### 项目交流群
|
||||
<img src="img/qr_code_71.jpg" alt="二维码" width="300" />
|
||||
<img src="img/qr_code_74.jpg" alt="二维码" width="300" />
|
||||
|
||||
🎉 Langchain-Chatchat 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
|
||||
### 公众号
|
||||

|
||||
🎉 Langchain-Chatchat 项目官方公众号,欢迎扫码关注。
|
||||
|
||||
<u>[Langchain-Chatchat](https://github.com/chatchat-space/Langchain-Chatchat)</u>:基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的检索增强生成(RAG)大模型知识库项目
|
||||
### 公众号
|
||||
|
||||
<img src="img/official_wechat_mp_account.png" alt="二维码" width="300" />
|
||||
|
||||
🎉 Langchain-Chatchat 项目官方公众号,欢迎扫码关注。
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@ ONLINE_LLM_MODEL = {
|
|||
# 线上模型。请在server_config中为每个在线API设置不同的端口
|
||||
|
||||
"openai-api": {
|
||||
"model_name": "gpt-35-turbo",
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"api_base_url": "https://api.openai.com/v1",
|
||||
"api_key": "",
|
||||
"openai_proxy": "",
|
||||
|
|
@ -114,6 +114,14 @@ ONLINE_LLM_MODEL = {
|
|||
"provider": "AzureWorker",
|
||||
},
|
||||
|
||||
# 昆仑万维天工 API https://model-platform.tiangong.cn/
|
||||
"tiangong-api": {
|
||||
"version":"SkyChat-MegaVerse",
|
||||
"api_key": "",
|
||||
"secret_key": "",
|
||||
"provider": "TianGongWorker",
|
||||
},
|
||||
|
||||
}
|
||||
|
||||
# 在以下字典中修改属性值,以指定本地embedding模型存储位置。支持3种设置方法:
|
||||
|
|
|
|||
|
|
@ -120,6 +120,9 @@ FSCHAT_MODEL_WORKERS = {
|
|||
"azure-api": {
|
||||
"port": 21008,
|
||||
},
|
||||
"tiangong-api": {
|
||||
"port": 21009,
|
||||
},
|
||||
}
|
||||
|
||||
# fastchat multi model worker server
|
||||
|
|
|
|||
Binary file not shown.
|
After Width: | Height: | Size: 198 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 270 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 174 KiB |
|
|
@ -7,7 +7,7 @@ xformers>=0.0.22.post4
|
|||
openai>=0.28.1
|
||||
sentence_transformers
|
||||
transformers>=4.34
|
||||
torch>=2.0.1 # 推荐2.1
|
||||
torch>=2.0.1 # suggest version 2.1
|
||||
torchvision
|
||||
torchaudio
|
||||
fastapi>=0.104
|
||||
|
|
@ -58,5 +58,5 @@ streamlit-option-menu>=0.3.6
|
|||
streamlit-antd-components>=0.1.11
|
||||
streamlit-chatbox>=1.1.11
|
||||
streamlit-aggrid>=0.3.4.post3
|
||||
httpx[brotli,http2,socks]>=0.25.0
|
||||
httpx~=0.24.0
|
||||
watchdog
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ xformers>=0.0.22.post4
|
|||
openai>=0.28.1
|
||||
sentence_transformers
|
||||
transformers>=4.34
|
||||
torch>=2.0.1 # 推荐2.1
|
||||
torch>=2.0.1 # suggest version 2.1
|
||||
torchvision
|
||||
torchaudio
|
||||
fastapi>=0.104
|
||||
|
|
|
|||
|
|
@ -7,3 +7,4 @@ from .fangzhou import FangZhouWorker
|
|||
from .qwen import QwenWorker
|
||||
from .baichuan import BaiChuanWorker
|
||||
from .azure import AzureWorker
|
||||
from .tiangong import TianGongWorker
|
||||
|
|
|
|||
|
|
@ -0,0 +1,90 @@
|
|||
import json
|
||||
import time
|
||||
import hashlib
|
||||
|
||||
from fastchat.conversation import Conversation
|
||||
from server.model_workers.base import *
|
||||
from server.utils import get_httpx_client
|
||||
from fastchat import conversation as conv
|
||||
import sys
|
||||
import json
|
||||
from typing import List, Literal, Dict
|
||||
import requests
|
||||
|
||||
|
||||
|
||||
class TianGongWorker(ApiModelWorker):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
controller_addr: str = None,
|
||||
worker_addr: str = None,
|
||||
model_names: List[str] = ["tiangong-api"],
|
||||
version: Literal["SkyChat-MegaVerse"] = "SkyChat-MegaVerse",
|
||||
**kwargs,
|
||||
):
|
||||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||||
kwargs.setdefault("context_len", 32768)
|
||||
super().__init__(**kwargs)
|
||||
self.version = version
|
||||
|
||||
def do_chat(self, params: ApiChatParams) -> Dict:
|
||||
params.load_config(self.model_names[0])
|
||||
|
||||
url = 'https://sky-api.singularity-ai.com/saas/api/v4/generate'
|
||||
data = {
|
||||
"messages": params.messages,
|
||||
"model": "SkyChat-MegaVerse"
|
||||
}
|
||||
timestamp = str(int(time.time()))
|
||||
sign_content = params.api_key + params.secret_key + timestamp
|
||||
sign_result = hashlib.md5(sign_content.encode('utf-8')).hexdigest()
|
||||
headers={
|
||||
"app_key": params.api_key,
|
||||
"timestamp": timestamp,
|
||||
"sign": sign_result,
|
||||
"Content-Type": "application/json",
|
||||
"stream": "true" # or change to "false" 不处理流式返回内容
|
||||
}
|
||||
|
||||
# 发起请求并获取响应
|
||||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||||
|
||||
text = ""
|
||||
# 处理响应流
|
||||
for line in response.iter_lines(chunk_size=None, decode_unicode=True):
|
||||
if line:
|
||||
# 处理接收到的数据
|
||||
# print(line.decode('utf-8'))
|
||||
resp = json.loads(line)
|
||||
if resp["code"] == 200:
|
||||
text += resp['resp_data']['reply']
|
||||
yield {
|
||||
"error_code": 0,
|
||||
"text": text
|
||||
}
|
||||
else:
|
||||
yield {
|
||||
"error_code": resp["code"],
|
||||
"text": resp["code_msg"]
|
||||
}
|
||||
|
||||
|
||||
|
||||
def get_embeddings(self, params):
|
||||
# TODO: 支持embeddings
|
||||
print("embedding")
|
||||
print(params)
|
||||
|
||||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||||
# TODO: 确认模板是否需要修改
|
||||
return conv.Conversation(
|
||||
name=self.model_names[0],
|
||||
system_message="",
|
||||
messages=[],
|
||||
roles=["user", "system"],
|
||||
sep="\n### ",
|
||||
stop_str="###",
|
||||
)
|
||||
|
||||
|
||||
Loading…
Reference in New Issue