合并分支,支持 (#1808)

* 北京黑客松更新

知识库支持:
支持zilliz数据库
Agent支持:
支持以下工具调用
1. 支持互联网Agent调用
2. 支持知识库Agent调用
3. 支持旅游助手工具(未上传)

知识库更新
1. 支持知识库简介,用于Agent选择
2. UI对应知识库简介

提示词选择
1. UI 和模板支持提示词模板更换选择

* 数据库更新介绍问题解决

* 关于Langchain自己支持的模型

1. 修复了Openai无法调用的bug
2. 支持了Azure Openai Claude模型
(在模型切换界面由于优先级问题,显示的会是其他联网模型)
3. 422问题被修复,用了另一种替代方案。
4. 更新了部分依赖
This commit is contained in:
zR 2023-10-20 18:13:55 +08:00 committed by GitHub
parent 83e25f8011
commit e920cd0064
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 135 additions and 68 deletions

View File

@ -1,6 +1,5 @@
import os
# 默认使用的知识库
DEFAULT_KNOWLEDGE_BASE = "samples"
@ -57,14 +56,11 @@ KB_INFO = {
"知识库名称": "知识库介绍",
"samples": "关于本项目issue的解答",
}
# 通常情况下不需要更改以下内容
# 知识库默认存储路径
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
if not os.path.exists(KB_ROOT_PATH):
os.mkdir(KB_ROOT_PATH)
# 数据库默认存储路径。
# 如果使用sqlite可以直接修改DB_ROOT_PATH如果使用其它数据库请直接修改SQLALCHEMY_DATABASE_URI。
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")

View File

@ -112,7 +112,8 @@ TEMPERATURE = 0.7
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
ONLINE_LLM_MODEL = {
LANGCHAIN_LLM_MODEL = {
# 不需要走Fschat封装的Langchain直接支持的模型。
# 调用chatgpt时如果报出 urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
# Max retries exceeded with url: /v1/chat/completions
# 则需要将urllib3版本修改为1.25.11
@ -128,11 +129,29 @@ ONLINE_LLM_MODEL = {
# 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI.
# 需要添加代理访问(正常开的代理软件可能会拦截不上)需要设置配置openai_proxy 或者 使用环境遍历OPENAI_PROXY 进行设置
# 比如: "openai_proxy": 'http://127.0.0.1:4780'
"gpt-3.5-turbo": {
# 这些配置文件的名字不能改动
"Azure-OpenAI": {
"deployment_name": "your Azure deployment name",
"model_version": "0701",
"openai_api_type": "azure",
"api_base_url": "https://your Azure point.azure.com",
"api_version": "2023-07-01-preview",
"api_key": "your Azure api key",
"openai_proxy": "",
},
"OpenAI": {
"model_name": "your openai model name(such as gpt-4)",
"api_base_url": "https://api.openai.com/v1",
"api_key": "your OPENAI_API_KEY",
"openai_proxy": "your OPENAI_PROXY",
"openai_proxy": "",
},
"Anthropic": {
"model_name": "your claude model name(such as claude2-100k)",
"api_key":"your ANTHROPIC_API_KEY",
}
}
ONLINE_LLM_MODEL = {
# 线上模型。请在server_config中为每个在线API设置不同的端口
# 具体注册及api key获取请前往 http://open.bigmodel.cn
"zhipu-api": {

View File

@ -1,3 +1,5 @@
import sys
sys.path.append(".")
from server.knowledge_base.migrate import create_tables, reset_tables, folder2db, prune_db_docs, prune_folder_files
from configs.model_config import NLTK_DATA_PATH
import nltk

View File

@ -1,14 +1,15 @@
langchain==0.0.317
langchain-experimental==0.0.30
langchain>=0.0.319
langchain-experimental>=0.0.30
fschat[model_worker]==0.2.31
openai
xformers>=0.0.22.post4
openai>=0.28.1
sentence_transformers
transformers>=4.34
torch>=2.0.1 # 推荐2.1
torchvision
torchaudio
fastapi>=0.103.2
nltk~=3.8.1
fastapi>=0.104
nltk>=3.8.1
uvicorn~=0.23.1
starlette~=0.27.0
pydantic~=1.10.11

View File

@ -1,13 +1,14 @@
langchain==0.0.317
langchain-experimental==0.0.30
langchain>=0.0.319
langchain-experimental>=0.0.30
fschat[model_worker]==0.2.31
openai
xformers>=0.0.22.post4
openai>=0.28.1
sentence_transformers>=2.2.2
transformers>=4.34
torch>=2.0.1
torch>=2.1
torchvision
torchaudio
fastapi>=0.103.1
fastapi>=0.104
nltk~=3.8.1
uvicorn~=0.23.1
starlette~=0.27.0

View File

@ -1,11 +1,11 @@
numpy~=1.24.4
pandas~=2.0.3
streamlit>=1.26.0
streamlit>=1.27.2
streamlit-option-menu>=0.3.6
streamlit-antd-components>=0.1.11
streamlit-antd-components>=0.2.3
streamlit-chatbox==1.1.10
streamlit-aggrid>=0.3.4.post3
httpx~=0.24.1
nltk
httpx>=0.25.0
nltk>=3.8.1
watchdog
websockets

View File

@ -97,7 +97,6 @@ class CustomAsyncIteratorCallbackHandler(AsyncIteratorCallbackHandler):
llm_token="",
)
self.queue.put_nowait(dumps(self.cur_tool))
async def on_chat_model_start(
self,
serialized: Dict[str, Any],

View File

@ -4,7 +4,6 @@ from langchain.prompts import StringPromptTemplate
from typing import List
from langchain.schema import AgentAction, AgentFinish
from server.agent import model_container
begin = False
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
@ -38,7 +37,7 @@ class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> AgentFinish | tuple[dict[str, str], str] | AgentAction:
# Check if agent should finish
support_agent = ["gpt","Qwen","qwen-api","baichuan-api"]
support_agent = ["Azure-OpenAI", "OpenAI", "Anthropic", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
if not any(agent in model_container.MODEL for agent in support_agent) and self.begin:
self.begin = False
stop_words = ["Observation:"]

View File

@ -2,7 +2,6 @@
from .search_knowledge_simple import knowledge_search_simple
from .search_all_knowledge_once import knowledge_search_once
from .search_all_knowledge_more import knowledge_search_more
# from .travel_assistant import travel_assistant
from .calculate import calculate
from .translator import translate
from .weather import weathercheck

View File

@ -1,7 +1,5 @@
import os
from transformers import AutoTokenizer
from configs import (
EMBEDDING_MODEL,
KB_ROOT_PATH,

View File

@ -1,5 +1,5 @@
from fastapi import Body
from configs import logger, log_verbose, LLM_MODEL, HTTPX_DEFAULT_TIMEOUT
from configs import logger, log_verbose, LLM_MODEL, HTTPX_DEFAULT_TIMEOUT,LANGCHAIN_LLM_MODEL
from server.utils import (BaseResponse, fschat_controller_address, list_config_llm_models,
get_httpx_client, get_model_worker_config)
@ -52,7 +52,6 @@ def get_model_config(
获取LLM模型配置项合并后的
'''
config = get_model_worker_config(model_name=model_name)
# 删除ONLINE_MODEL配置中的敏感信息
del_keys = set(["worker_class"])
for k in config:

View File

@ -5,12 +5,11 @@ from fastapi import FastAPI
from pathlib import Path
import asyncio
from configs import (LLM_MODEL, LLM_DEVICE, EMBEDDING_DEVICE,
MODEL_PATH, MODEL_ROOT_PATH, ONLINE_LLM_MODEL,
logger, log_verbose,
MODEL_PATH, MODEL_ROOT_PATH, ONLINE_LLM_MODEL, LANGCHAIN_LLM_MODEL, logger, log_verbose,
FSCHAT_MODEL_WORKERS, HTTPX_DEFAULT_TIMEOUT)
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from langchain.chat_models import ChatOpenAI
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI, ChatAnthropic
import httpx
from typing import Literal, Optional, Callable, Generator, Dict, Any, Awaitable, Union
@ -40,19 +39,64 @@ def get_ChatOpenAI(
verbose: bool = True,
**kwargs: Any,
) -> ChatOpenAI:
config = get_model_worker_config(model_name)
model = ChatOpenAI(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
openai_api_key=config.get("api_key", "EMPTY"),
openai_api_base=config.get("api_base_url", fschat_openai_api_address()),
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
openai_proxy=config.get("openai_proxy"),
**kwargs
)
## 以下模型是Langchain原生支持的模型这些模型不会走Fschat封装
config_models = list_config_llm_models()
if model_name in config_models.get("langchain", {}):
config = config_models["langchain"][model_name]
if model_name == "Azure-OpenAI":
model = AzureChatOpenAI(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
deployment_name=config.get("deployment_name"),
model_version=config.get("model_version"),
openai_api_type=config.get("openai_api_type"),
openai_api_base=config.get("api_base_url"),
openai_api_version=config.get("api_version"),
openai_api_key=config.get("api_key"),
openai_proxy=config.get("openai_proxy"),
temperature=temperature,
max_tokens=max_tokens,
)
elif model_name == "OpenAI":
model = ChatOpenAI(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
model_name=config.get("model_name"),
openai_api_base=config.get("api_base_url"),
openai_api_key=config.get("api_key"),
openai_proxy=config.get("openai_proxy"),
temperature=temperature,
max_tokens=max_tokens,
)
elif model_name == "Anthropic":
model = ChatAnthropic(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
model_name=config.get("model_name"),
anthropic_api_key=config.get("api_key"),
)
## TODO 支持其他的Langchain原生支持的模型
else:
## 非Langchain原生支持的模型走Fschat封装
config = get_model_worker_config(model_name)
model = ChatOpenAI(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
openai_api_key=config.get("api_key", "EMPTY"),
openai_api_base=config.get("api_base_url", fschat_openai_api_address()),
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
openai_proxy=config.get("openai_proxy"),
**kwargs
)
return model
@ -249,8 +293,9 @@ def MakeFastAPIOffline(
redoc_favicon_url=favicon,
)
# 从model_config中获取模型信息
# 从model_config中获取模型信息
def list_embed_models() -> List[str]:
'''
get names of configured embedding models
@ -266,9 +311,9 @@ def list_config_llm_models() -> Dict[str, Dict]:
workers = list(FSCHAT_MODEL_WORKERS)
if LLM_MODEL not in workers:
workers.insert(0, LLM_MODEL)
return {
"local": MODEL_PATH["llm_model"],
"langchain": LANGCHAIN_LLM_MODEL,
"online": ONLINE_LLM_MODEL,
"worker": workers,
}
@ -300,8 +345,9 @@ def get_model_path(model_name: str, type: str = None) -> Optional[str]:
return str(path)
return path_str # THUDM/chatglm06b
# 从server_config中获取服务信息
# 从server_config中获取服务信息
def get_model_worker_config(model_name: str = None) -> dict:
'''
加载model worker的配置项
@ -316,6 +362,10 @@ def get_model_worker_config(model_name: str = None) -> dict:
config.update(FSCHAT_MODEL_WORKERS.get(model_name, {}))
# 在线模型API
if model_name in LANGCHAIN_LLM_MODEL:
config["langchain_model"] = True
config["worker_class"] = ""
if model_name in ONLINE_LLM_MODEL:
config["online_api"] = True
if provider := config.get("provider"):
@ -389,7 +439,7 @@ def webui_address() -> str:
return f"http://{host}:{port}"
def get_prompt_template(type:str,name: str) -> Optional[str]:
def get_prompt_template(type: str, name: str) -> Optional[str]:
'''
从prompt_config中加载模板内容
type: "llm_chat","agent_chat","knowledge_base_chat","search_engine_chat"的其中一种如果有新功能应该进行加入
@ -459,8 +509,9 @@ def set_httpx_config(
import urllib.request
urllib.request.getproxies = _get_proxies
# 自动检查torch可用的设备。分布式部署时不运行LLM的机器上可以不装torch
# 自动检查torch可用的设备。分布式部署时不运行LLM的机器上可以不装torch
def detect_device() -> Literal["cuda", "mps", "cpu"]:
try:
import torch

View File

@ -68,7 +68,9 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
controller_address:
worker_address:
对于Langchain支持的模型
langchain_model:True
不会使用fschat
对于online_api:
online_api:True
worker_class: `provider`
@ -85,9 +87,11 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
for k, v in kwargs.items():
setattr(args, k, v)
if worker_class := kwargs.get("langchain_model"): #Langchian支持的模型不用做操作
from fastchat.serve.base_model_worker import app
worker = ""
# 在线模型API
if worker_class := kwargs.get("worker_class"):
elif worker_class := kwargs.get("worker_class"):
from fastchat.serve.base_model_worker import app
worker = worker_class(model_names=args.model_names,
@ -127,8 +131,8 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
args.engine_use_ray = False
args.disable_log_requests = False
# 0.2.0 vllm后要加的参数
args.max_model_len = 8192 # 模型可以处理的最大序列长度。请根据你的大模型设置,
# 0.2.0 vllm后要加的参数, 但是这里不需要
args.max_model_len = None
args.revision = None
args.quantization = None
args.max_log_len = None

View File

@ -4,10 +4,9 @@ from streamlit_chatbox import *
from datetime import datetime
import os
from configs import (LLM_MODEL, TEMPERATURE, HISTORY_LEN, PROMPT_TEMPLATES,
DEFAULT_KNOWLEDGE_BASE, DEFAULT_SEARCH_ENGINE)
DEFAULT_KNOWLEDGE_BASE, DEFAULT_SEARCH_ENGINE,LANGCHAIN_LLM_MODEL)
from typing import List, Dict
chat_box = ChatBox(
assistant_avatar=os.path.join(
"img",
@ -42,7 +41,6 @@ def get_default_llm_model(api: ApiRequest) -> (str, bool):
返回类型为model_name, is_local_model
'''
running_models = api.list_running_models()
if not running_models:
return "", False
@ -52,7 +50,6 @@ def get_default_llm_model(api: ApiRequest) -> (str, bool):
local_models = [k for k, v in running_models.items() if not v.get("online_api")]
if local_models:
return local_models[0], True
return list(running_models)[0], False
@ -82,7 +79,7 @@ def dialogue_page(api: ApiRequest):
"搜索引擎问答",
"自定义Agent问答",
],
index=3,
index=0,
on_change=on_mode_change,
key="dialogue_mode",
)
@ -100,16 +97,18 @@ def dialogue_page(api: ApiRequest):
return x
running_models = list(api.list_running_models())
running_models += LANGCHAIN_LLM_MODEL.keys()
available_models = []
config_models = api.list_config_models()
worker_models = list(config_models.get("worker", {})) # 仅列出在FSCHAT_MODEL_WORKERS中配置的模型
for m in worker_models:
if m not in running_models and m != "default":
available_models.append(m)
for k, v in config_models.get("online", {}).items(): # 列出ONLINE_MODELS中直接访问的模型如GPT
for k, v in config_models.get("online", {}).items(): # 列出ONLINE_MODELS中直接访问的模型
if not v.get("provider") and k not in running_models:
print(k, v)
available_models.append(k)
for k, v in config_models.get("langchain", {}).items(): # 列出LANGCHAIN_LLM_MODEL支持的模型
available_models.append(k)
llm_models = running_models + available_models
index = llm_models.index(st.session_state.get("cur_llm_model", get_default_llm_model(api)[0]))
llm_model = st.selectbox("选择LLM模型",
@ -119,10 +118,10 @@ def dialogue_page(api: ApiRequest):
on_change=on_llm_change,
key="llm_model",
)
if (llm_model
and st.session_state.get("prev_llm_model") != llm_model
and not api.get_model_config(llm_model).get("online_api")
and llm_model not in running_models):
if (st.session_state.get("prev_llm_model") != llm_model
and not llm_model in config_models.get("online", {})
and not llm_model in config_models.get("langchain", {})
and llm_model not in running_models):
with st.spinner(f"正在加载模型: {llm_model},请勿进行操作或刷新页面"):
prev_model = st.session_state.get("prev_llm_model")
r = api.change_llm_model(prev_model, llm_model)
@ -228,9 +227,9 @@ def dialogue_page(api: ApiRequest):
])
text = ""
ans = ""
support_agent = ["gpt", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
support_agent = ["Azure-OpenAI", "OpenAI", "Anthropic", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
if not any(agent in llm_model for agent in support_agent):
ans += "正在思考... \n\n <span style='color:red'>该模型并没有进行Agent对齐无法正常使用Agent功能</span>\n\n\n<span style='color:red'>请更换 GPT4或Qwen-14B等支持Agent的模型获得更好的体验 </span> \n\n\n"
ans += "正在思考... \n\n <span style='color:red'>该模型并没有进行Agent对齐请更换支持Agent的模型获得更好的体验</span>\n\n\n"
chat_box.update_msg(ans, element_index=0, streaming=False)
for d in api.agent_chat(prompt,
history=history,