合并分支,支持 (#1808)
* 北京黑客松更新 知识库支持: 支持zilliz数据库 Agent支持: 支持以下工具调用 1. 支持互联网Agent调用 2. 支持知识库Agent调用 3. 支持旅游助手工具(未上传) 知识库更新 1. 支持知识库简介,用于Agent选择 2. UI对应知识库简介 提示词选择 1. UI 和模板支持提示词模板更换选择 * 数据库更新介绍问题解决 * 关于Langchain自己支持的模型 1. 修复了Openai无法调用的bug 2. 支持了Azure Openai Claude模型 (在模型切换界面由于优先级问题,显示的会是其他联网模型) 3. 422问题被修复,用了另一种替代方案。 4. 更新了部分依赖
This commit is contained in:
parent
83e25f8011
commit
e920cd0064
|
|
@ -1,6 +1,5 @@
|
|||
import os
|
||||
|
||||
|
||||
# 默认使用的知识库
|
||||
DEFAULT_KNOWLEDGE_BASE = "samples"
|
||||
|
||||
|
|
@ -57,14 +56,11 @@ KB_INFO = {
|
|||
"知识库名称": "知识库介绍",
|
||||
"samples": "关于本项目issue的解答",
|
||||
}
|
||||
|
||||
# 通常情况下不需要更改以下内容
|
||||
|
||||
# 知识库默认存储路径
|
||||
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
|
||||
if not os.path.exists(KB_ROOT_PATH):
|
||||
os.mkdir(KB_ROOT_PATH)
|
||||
|
||||
# 数据库默认存储路径。
|
||||
# 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。
|
||||
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
|
||||
|
|
|
|||
|
|
@ -112,7 +112,8 @@ TEMPERATURE = 0.7
|
|||
# TOP_P = 0.95 # ChatOpenAI暂不支持该参数
|
||||
|
||||
|
||||
ONLINE_LLM_MODEL = {
|
||||
LANGCHAIN_LLM_MODEL = {
|
||||
# 不需要走Fschat封装的,Langchain直接支持的模型。
|
||||
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||||
# Max retries exceeded with url: /v1/chat/completions
|
||||
# 则需要将urllib3版本修改为1.25.11
|
||||
|
|
@ -128,11 +129,29 @@ ONLINE_LLM_MODEL = {
|
|||
# 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI.
|
||||
# 需要添加代理访问(正常开的代理软件可能会拦截不上)需要设置配置openai_proxy 或者 使用环境遍历OPENAI_PROXY 进行设置
|
||||
# 比如: "openai_proxy": 'http://127.0.0.1:4780'
|
||||
"gpt-3.5-turbo": {
|
||||
|
||||
# 这些配置文件的名字不能改动
|
||||
"Azure-OpenAI": {
|
||||
"deployment_name": "your Azure deployment name",
|
||||
"model_version": "0701",
|
||||
"openai_api_type": "azure",
|
||||
"api_base_url": "https://your Azure point.azure.com",
|
||||
"api_version": "2023-07-01-preview",
|
||||
"api_key": "your Azure api key",
|
||||
"openai_proxy": "",
|
||||
},
|
||||
"OpenAI": {
|
||||
"model_name": "your openai model name(such as gpt-4)",
|
||||
"api_base_url": "https://api.openai.com/v1",
|
||||
"api_key": "your OPENAI_API_KEY",
|
||||
"openai_proxy": "your OPENAI_PROXY",
|
||||
"openai_proxy": "",
|
||||
},
|
||||
"Anthropic": {
|
||||
"model_name": "your claude model name(such as claude2-100k)",
|
||||
"api_key":"your ANTHROPIC_API_KEY",
|
||||
}
|
||||
}
|
||||
ONLINE_LLM_MODEL = {
|
||||
# 线上模型。请在server_config中为每个在线API设置不同的端口
|
||||
# 具体注册及api key获取请前往 http://open.bigmodel.cn
|
||||
"zhipu-api": {
|
||||
|
|
|
|||
|
|
@ -1,3 +1,5 @@
|
|||
import sys
|
||||
sys.path.append(".")
|
||||
from server.knowledge_base.migrate import create_tables, reset_tables, folder2db, prune_db_docs, prune_folder_files
|
||||
from configs.model_config import NLTK_DATA_PATH
|
||||
import nltk
|
||||
|
|
|
|||
|
|
@ -1,14 +1,15 @@
|
|||
langchain==0.0.317
|
||||
langchain-experimental==0.0.30
|
||||
langchain>=0.0.319
|
||||
langchain-experimental>=0.0.30
|
||||
fschat[model_worker]==0.2.31
|
||||
openai
|
||||
xformers>=0.0.22.post4
|
||||
openai>=0.28.1
|
||||
sentence_transformers
|
||||
transformers>=4.34
|
||||
torch>=2.0.1 # 推荐2.1
|
||||
torchvision
|
||||
torchaudio
|
||||
fastapi>=0.103.2
|
||||
nltk~=3.8.1
|
||||
fastapi>=0.104
|
||||
nltk>=3.8.1
|
||||
uvicorn~=0.23.1
|
||||
starlette~=0.27.0
|
||||
pydantic~=1.10.11
|
||||
|
|
|
|||
|
|
@ -1,13 +1,14 @@
|
|||
langchain==0.0.317
|
||||
langchain-experimental==0.0.30
|
||||
langchain>=0.0.319
|
||||
langchain-experimental>=0.0.30
|
||||
fschat[model_worker]==0.2.31
|
||||
openai
|
||||
xformers>=0.0.22.post4
|
||||
openai>=0.28.1
|
||||
sentence_transformers>=2.2.2
|
||||
transformers>=4.34
|
||||
torch>=2.0.1
|
||||
torch>=2.1
|
||||
torchvision
|
||||
torchaudio
|
||||
fastapi>=0.103.1
|
||||
fastapi>=0.104
|
||||
nltk~=3.8.1
|
||||
uvicorn~=0.23.1
|
||||
starlette~=0.27.0
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
numpy~=1.24.4
|
||||
pandas~=2.0.3
|
||||
streamlit>=1.26.0
|
||||
streamlit>=1.27.2
|
||||
streamlit-option-menu>=0.3.6
|
||||
streamlit-antd-components>=0.1.11
|
||||
streamlit-antd-components>=0.2.3
|
||||
streamlit-chatbox==1.1.10
|
||||
streamlit-aggrid>=0.3.4.post3
|
||||
httpx~=0.24.1
|
||||
nltk
|
||||
httpx>=0.25.0
|
||||
nltk>=3.8.1
|
||||
watchdog
|
||||
websockets
|
||||
|
|
|
|||
|
|
@ -97,7 +97,6 @@ class CustomAsyncIteratorCallbackHandler(AsyncIteratorCallbackHandler):
|
|||
llm_token="",
|
||||
)
|
||||
self.queue.put_nowait(dumps(self.cur_tool))
|
||||
|
||||
async def on_chat_model_start(
|
||||
self,
|
||||
serialized: Dict[str, Any],
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@ from langchain.prompts import StringPromptTemplate
|
|||
from typing import List
|
||||
from langchain.schema import AgentAction, AgentFinish
|
||||
from server.agent import model_container
|
||||
begin = False
|
||||
class CustomPromptTemplate(StringPromptTemplate):
|
||||
# The template to use
|
||||
template: str
|
||||
|
|
@ -38,7 +37,7 @@ class CustomOutputParser(AgentOutputParser):
|
|||
|
||||
def parse(self, llm_output: str) -> AgentFinish | tuple[dict[str, str], str] | AgentAction:
|
||||
# Check if agent should finish
|
||||
support_agent = ["gpt","Qwen","qwen-api","baichuan-api"]
|
||||
support_agent = ["Azure-OpenAI", "OpenAI", "Anthropic", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
|
||||
if not any(agent in model_container.MODEL for agent in support_agent) and self.begin:
|
||||
self.begin = False
|
||||
stop_words = ["Observation:"]
|
||||
|
|
|
|||
|
|
@ -2,7 +2,6 @@
|
|||
from .search_knowledge_simple import knowledge_search_simple
|
||||
from .search_all_knowledge_once import knowledge_search_once
|
||||
from .search_all_knowledge_more import knowledge_search_more
|
||||
# from .travel_assistant import travel_assistant
|
||||
from .calculate import calculate
|
||||
from .translator import translate
|
||||
from .weather import weathercheck
|
||||
|
|
|
|||
|
|
@ -1,7 +1,5 @@
|
|||
import os
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from configs import (
|
||||
EMBEDDING_MODEL,
|
||||
KB_ROOT_PATH,
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
from fastapi import Body
|
||||
from configs import logger, log_verbose, LLM_MODEL, HTTPX_DEFAULT_TIMEOUT
|
||||
from configs import logger, log_verbose, LLM_MODEL, HTTPX_DEFAULT_TIMEOUT,LANGCHAIN_LLM_MODEL
|
||||
from server.utils import (BaseResponse, fschat_controller_address, list_config_llm_models,
|
||||
get_httpx_client, get_model_worker_config)
|
||||
|
||||
|
|
@ -52,7 +52,6 @@ def get_model_config(
|
|||
获取LLM模型配置项(合并后的)
|
||||
'''
|
||||
config = get_model_worker_config(model_name=model_name)
|
||||
|
||||
# 删除ONLINE_MODEL配置中的敏感信息
|
||||
del_keys = set(["worker_class"])
|
||||
for k in config:
|
||||
|
|
|
|||
|
|
@ -5,12 +5,11 @@ from fastapi import FastAPI
|
|||
from pathlib import Path
|
||||
import asyncio
|
||||
from configs import (LLM_MODEL, LLM_DEVICE, EMBEDDING_DEVICE,
|
||||
MODEL_PATH, MODEL_ROOT_PATH, ONLINE_LLM_MODEL,
|
||||
logger, log_verbose,
|
||||
MODEL_PATH, MODEL_ROOT_PATH, ONLINE_LLM_MODEL, LANGCHAIN_LLM_MODEL, logger, log_verbose,
|
||||
FSCHAT_MODEL_WORKERS, HTTPX_DEFAULT_TIMEOUT)
|
||||
import os
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.chat_models import ChatOpenAI, AzureChatOpenAI, ChatAnthropic
|
||||
import httpx
|
||||
from typing import Literal, Optional, Callable, Generator, Dict, Any, Awaitable, Union
|
||||
|
||||
|
|
@ -40,19 +39,64 @@ def get_ChatOpenAI(
|
|||
verbose: bool = True,
|
||||
**kwargs: Any,
|
||||
) -> ChatOpenAI:
|
||||
config = get_model_worker_config(model_name)
|
||||
model = ChatOpenAI(
|
||||
streaming=streaming,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
openai_api_key=config.get("api_key", "EMPTY"),
|
||||
openai_api_base=config.get("api_base_url", fschat_openai_api_address()),
|
||||
model_name=model_name,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
openai_proxy=config.get("openai_proxy"),
|
||||
**kwargs
|
||||
)
|
||||
## 以下模型是Langchain原生支持的模型,这些模型不会走Fschat封装
|
||||
config_models = list_config_llm_models()
|
||||
if model_name in config_models.get("langchain", {}):
|
||||
config = config_models["langchain"][model_name]
|
||||
if model_name == "Azure-OpenAI":
|
||||
model = AzureChatOpenAI(
|
||||
streaming=streaming,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
deployment_name=config.get("deployment_name"),
|
||||
model_version=config.get("model_version"),
|
||||
openai_api_type=config.get("openai_api_type"),
|
||||
openai_api_base=config.get("api_base_url"),
|
||||
openai_api_version=config.get("api_version"),
|
||||
openai_api_key=config.get("api_key"),
|
||||
openai_proxy=config.get("openai_proxy"),
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
elif model_name == "OpenAI":
|
||||
model = ChatOpenAI(
|
||||
streaming=streaming,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
model_name=config.get("model_name"),
|
||||
openai_api_base=config.get("api_base_url"),
|
||||
openai_api_key=config.get("api_key"),
|
||||
openai_proxy=config.get("openai_proxy"),
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
elif model_name == "Anthropic":
|
||||
model = ChatAnthropic(
|
||||
streaming=streaming,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
model_name=config.get("model_name"),
|
||||
anthropic_api_key=config.get("api_key"),
|
||||
|
||||
)
|
||||
## TODO 支持其他的Langchain原生支持的模型
|
||||
else:
|
||||
## 非Langchain原生支持的模型,走Fschat封装
|
||||
config = get_model_worker_config(model_name)
|
||||
model = ChatOpenAI(
|
||||
streaming=streaming,
|
||||
verbose=verbose,
|
||||
callbacks=callbacks,
|
||||
openai_api_key=config.get("api_key", "EMPTY"),
|
||||
openai_api_base=config.get("api_base_url", fschat_openai_api_address()),
|
||||
model_name=model_name,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
openai_proxy=config.get("openai_proxy"),
|
||||
**kwargs
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
|
|
@ -249,8 +293,9 @@ def MakeFastAPIOffline(
|
|||
redoc_favicon_url=favicon,
|
||||
)
|
||||
|
||||
# 从model_config中获取模型信息
|
||||
|
||||
|
||||
# 从model_config中获取模型信息
|
||||
def list_embed_models() -> List[str]:
|
||||
'''
|
||||
get names of configured embedding models
|
||||
|
|
@ -266,9 +311,9 @@ def list_config_llm_models() -> Dict[str, Dict]:
|
|||
workers = list(FSCHAT_MODEL_WORKERS)
|
||||
if LLM_MODEL not in workers:
|
||||
workers.insert(0, LLM_MODEL)
|
||||
|
||||
return {
|
||||
"local": MODEL_PATH["llm_model"],
|
||||
"langchain": LANGCHAIN_LLM_MODEL,
|
||||
"online": ONLINE_LLM_MODEL,
|
||||
"worker": workers,
|
||||
}
|
||||
|
|
@ -300,8 +345,9 @@ def get_model_path(model_name: str, type: str = None) -> Optional[str]:
|
|||
return str(path)
|
||||
return path_str # THUDM/chatglm06b
|
||||
|
||||
# 从server_config中获取服务信息
|
||||
|
||||
|
||||
# 从server_config中获取服务信息
|
||||
def get_model_worker_config(model_name: str = None) -> dict:
|
||||
'''
|
||||
加载model worker的配置项。
|
||||
|
|
@ -316,6 +362,10 @@ def get_model_worker_config(model_name: str = None) -> dict:
|
|||
config.update(FSCHAT_MODEL_WORKERS.get(model_name, {}))
|
||||
|
||||
# 在线模型API
|
||||
if model_name in LANGCHAIN_LLM_MODEL:
|
||||
config["langchain_model"] = True
|
||||
config["worker_class"] = ""
|
||||
|
||||
if model_name in ONLINE_LLM_MODEL:
|
||||
config["online_api"] = True
|
||||
if provider := config.get("provider"):
|
||||
|
|
@ -389,7 +439,7 @@ def webui_address() -> str:
|
|||
return f"http://{host}:{port}"
|
||||
|
||||
|
||||
def get_prompt_template(type:str,name: str) -> Optional[str]:
|
||||
def get_prompt_template(type: str, name: str) -> Optional[str]:
|
||||
'''
|
||||
从prompt_config中加载模板内容
|
||||
type: "llm_chat","agent_chat","knowledge_base_chat","search_engine_chat"的其中一种,如果有新功能,应该进行加入。
|
||||
|
|
@ -459,8 +509,9 @@ def set_httpx_config(
|
|||
import urllib.request
|
||||
urllib.request.getproxies = _get_proxies
|
||||
|
||||
# 自动检查torch可用的设备。分布式部署时,不运行LLM的机器上可以不装torch
|
||||
|
||||
|
||||
# 自动检查torch可用的设备。分布式部署时,不运行LLM的机器上可以不装torch
|
||||
def detect_device() -> Literal["cuda", "mps", "cpu"]:
|
||||
try:
|
||||
import torch
|
||||
|
|
|
|||
14
startup.py
14
startup.py
|
|
@ -68,7 +68,9 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
|
|||
controller_address:
|
||||
worker_address:
|
||||
|
||||
|
||||
对于Langchain支持的模型:
|
||||
langchain_model:True
|
||||
不会使用fschat
|
||||
对于online_api:
|
||||
online_api:True
|
||||
worker_class: `provider`
|
||||
|
|
@ -85,9 +87,11 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
|
|||
|
||||
for k, v in kwargs.items():
|
||||
setattr(args, k, v)
|
||||
|
||||
if worker_class := kwargs.get("langchain_model"): #Langchian支持的模型不用做操作
|
||||
from fastchat.serve.base_model_worker import app
|
||||
worker = ""
|
||||
# 在线模型API
|
||||
if worker_class := kwargs.get("worker_class"):
|
||||
elif worker_class := kwargs.get("worker_class"):
|
||||
from fastchat.serve.base_model_worker import app
|
||||
|
||||
worker = worker_class(model_names=args.model_names,
|
||||
|
|
@ -127,8 +131,8 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
|
|||
args.engine_use_ray = False
|
||||
args.disable_log_requests = False
|
||||
|
||||
# 0.2.0 vllm后要加的参数
|
||||
args.max_model_len = 8192 # 模型可以处理的最大序列长度。请根据你的大模型设置,
|
||||
# 0.2.0 vllm后要加的参数, 但是这里不需要
|
||||
args.max_model_len = None
|
||||
args.revision = None
|
||||
args.quantization = None
|
||||
args.max_log_len = None
|
||||
|
|
|
|||
|
|
@ -4,10 +4,9 @@ from streamlit_chatbox import *
|
|||
from datetime import datetime
|
||||
import os
|
||||
from configs import (LLM_MODEL, TEMPERATURE, HISTORY_LEN, PROMPT_TEMPLATES,
|
||||
DEFAULT_KNOWLEDGE_BASE, DEFAULT_SEARCH_ENGINE)
|
||||
DEFAULT_KNOWLEDGE_BASE, DEFAULT_SEARCH_ENGINE,LANGCHAIN_LLM_MODEL)
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
chat_box = ChatBox(
|
||||
assistant_avatar=os.path.join(
|
||||
"img",
|
||||
|
|
@ -42,7 +41,6 @@ def get_default_llm_model(api: ApiRequest) -> (str, bool):
|
|||
返回类型为(model_name, is_local_model)
|
||||
'''
|
||||
running_models = api.list_running_models()
|
||||
|
||||
if not running_models:
|
||||
return "", False
|
||||
|
||||
|
|
@ -52,7 +50,6 @@ def get_default_llm_model(api: ApiRequest) -> (str, bool):
|
|||
local_models = [k for k, v in running_models.items() if not v.get("online_api")]
|
||||
if local_models:
|
||||
return local_models[0], True
|
||||
|
||||
return list(running_models)[0], False
|
||||
|
||||
|
||||
|
|
@ -82,7 +79,7 @@ def dialogue_page(api: ApiRequest):
|
|||
"搜索引擎问答",
|
||||
"自定义Agent问答",
|
||||
],
|
||||
index=3,
|
||||
index=0,
|
||||
on_change=on_mode_change,
|
||||
key="dialogue_mode",
|
||||
)
|
||||
|
|
@ -100,16 +97,18 @@ def dialogue_page(api: ApiRequest):
|
|||
return x
|
||||
|
||||
running_models = list(api.list_running_models())
|
||||
running_models += LANGCHAIN_LLM_MODEL.keys()
|
||||
available_models = []
|
||||
config_models = api.list_config_models()
|
||||
worker_models = list(config_models.get("worker", {})) # 仅列出在FSCHAT_MODEL_WORKERS中配置的模型
|
||||
for m in worker_models:
|
||||
if m not in running_models and m != "default":
|
||||
available_models.append(m)
|
||||
for k, v in config_models.get("online", {}).items(): # 列出ONLINE_MODELS中直接访问的模型(如GPT)
|
||||
for k, v in config_models.get("online", {}).items(): # 列出ONLINE_MODELS中直接访问的模型
|
||||
if not v.get("provider") and k not in running_models:
|
||||
print(k, v)
|
||||
available_models.append(k)
|
||||
for k, v in config_models.get("langchain", {}).items(): # 列出LANGCHAIN_LLM_MODEL支持的模型
|
||||
available_models.append(k)
|
||||
llm_models = running_models + available_models
|
||||
index = llm_models.index(st.session_state.get("cur_llm_model", get_default_llm_model(api)[0]))
|
||||
llm_model = st.selectbox("选择LLM模型:",
|
||||
|
|
@ -119,10 +118,10 @@ def dialogue_page(api: ApiRequest):
|
|||
on_change=on_llm_change,
|
||||
key="llm_model",
|
||||
)
|
||||
if (llm_model
|
||||
and st.session_state.get("prev_llm_model") != llm_model
|
||||
and not api.get_model_config(llm_model).get("online_api")
|
||||
and llm_model not in running_models):
|
||||
if (st.session_state.get("prev_llm_model") != llm_model
|
||||
and not llm_model in config_models.get("online", {})
|
||||
and not llm_model in config_models.get("langchain", {})
|
||||
and llm_model not in running_models):
|
||||
with st.spinner(f"正在加载模型: {llm_model},请勿进行操作或刷新页面"):
|
||||
prev_model = st.session_state.get("prev_llm_model")
|
||||
r = api.change_llm_model(prev_model, llm_model)
|
||||
|
|
@ -228,9 +227,9 @@ def dialogue_page(api: ApiRequest):
|
|||
])
|
||||
text = ""
|
||||
ans = ""
|
||||
support_agent = ["gpt", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
|
||||
support_agent = ["Azure-OpenAI", "OpenAI", "Anthropic", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
|
||||
if not any(agent in llm_model for agent in support_agent):
|
||||
ans += "正在思考... \n\n <span style='color:red'>该模型并没有进行Agent对齐,无法正常使用Agent功能!</span>\n\n\n<span style='color:red'>请更换 GPT4或Qwen-14B等支持Agent的模型获得更好的体验! </span> \n\n\n"
|
||||
ans += "正在思考... \n\n <span style='color:red'>该模型并没有进行Agent对齐,请更换支持Agent的模型获得更好的体验!</span>\n\n\n"
|
||||
chat_box.update_msg(ans, element_index=0, streaming=False)
|
||||
for d in api.agent_chat(prompt,
|
||||
history=history,
|
||||
|
|
|
|||
Loading…
Reference in New Issue