Merge branch 'dev' into pre-release
This commit is contained in:
commit
e995301995
22
README.md
22
README.md
|
|
@ -126,6 +126,7 @@ docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/ch
|
|||
- [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh)
|
||||
- [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh)
|
||||
- [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh)
|
||||
- [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct)
|
||||
- [text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence)
|
||||
- [text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase)
|
||||
- [text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual)
|
||||
|
|
@ -133,6 +134,7 @@ docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/ch
|
|||
- [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese)
|
||||
- [nghuyong/ernie-3.0-nano-zh](https://huggingface.co/nghuyong/ernie-3.0-nano-zh)
|
||||
- [nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh)
|
||||
- [OpenAI/text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings)
|
||||
|
||||
---
|
||||
|
||||
|
|
@ -206,6 +208,7 @@ embedding_model_dict = {
|
|||
"m3e-base": "/Users/xxx/Downloads/m3e-base",
|
||||
}
|
||||
```
|
||||
如果你选择使用OpenAI的Embedding模型,请将模型的```key```写入`embedding_model_dict`中。使用该模型,你需要鞥能够访问OpenAI官的API,或设置代理。
|
||||
|
||||
### 4. 知识库初始化与迁移
|
||||
|
||||
|
|
@ -298,24 +301,13 @@ $ python server/llm_api_shutdown.py --serve all
|
|||
|
||||
亦可单独停止一个 FastChat 服务模块,可选 [`all`, `controller`, `model_worker`, `openai_api_server`]
|
||||
|
||||
##### 5.1.3 PEFT 加载
|
||||
##### 5.1.3 PEFT 加载(包括lora,p-tuning,prefix tuning, prompt tuning,ia等)
|
||||
|
||||
本项目基于 FastChat 加载 LLM 服务,故需以 FastChat 加载 PEFT 路径,即保证路径名称里必须有 peft 这个词,配置文件的名字为 adapter_config.json,peft 路径下包含 model.bin 格式的 PEFT 权重。
|
||||
详细步骤参考[加载lora微调后模型失效](https://github.com/chatchat-space/Langchain-Chatchat/issues/1130#issuecomment-1685291822)
|
||||
|
||||
示例代码如下:
|
||||

|
||||
|
||||
```shell
|
||||
PEFT_SHARE_BASE_WEIGHTS=true python3 -m fastchat.serve.multi_model_worker \
|
||||
--model-path /data/chris/peft-llama-dummy-1 \
|
||||
--model-names peft-dummy-1 \
|
||||
--model-path /data/chris/peft-llama-dummy-2 \
|
||||
--model-names peft-dummy-2 \
|
||||
--model-path /data/chris/peft-llama-dummy-3 \
|
||||
--model-names peft-dummy-3 \
|
||||
--num-gpus 2
|
||||
```
|
||||
|
||||
详见 [FastChat 相关 PR](https://github.com/lm-sys/fastchat/pull/1905#issuecomment-1627801216)
|
||||
|
||||
#### 5.2 启动 API 服务
|
||||
|
||||
|
|
@ -441,6 +433,6 @@ $ python startup.py --all-webui --model-name Qwen-7B-Chat
|
|||
|
||||
## 项目交流群
|
||||
|
||||
<img src="img/qr_code_54.jpg" alt="二维码" width="300" height="300" />
|
||||
<img src="img/qr_code_56.jpg" alt="二维码" width="300" height="300" />
|
||||
|
||||
🎉 langchain-ChatGLM 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
|
||||
|
|
|
|||
|
|
@ -24,7 +24,9 @@ embedding_model_dict = {
|
|||
"m3e-large": "moka-ai/m3e-large",
|
||||
"bge-small-zh": "BAAI/bge-small-zh",
|
||||
"bge-base-zh": "BAAI/bge-base-zh",
|
||||
"bge-large-zh": "BAAI/bge-large-zh"
|
||||
"bge-large-zh": "BAAI/bge-large-zh",
|
||||
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
|
||||
"text-embedding-ada-002": os.environ.get("OPENAI_API_KEY")
|
||||
}
|
||||
|
||||
# 选用的 Embedding 名称
|
||||
|
|
@ -41,12 +43,6 @@ llm_model_dict = {
|
|||
"api_key": "EMPTY"
|
||||
},
|
||||
|
||||
"chatglm-6b-int4": {
|
||||
"local_model_path": "THUDM/chatglm-6b-int4",
|
||||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_key": "EMPTY"
|
||||
},
|
||||
|
||||
"chatglm2-6b": {
|
||||
"local_model_path": "THUDM/chatglm2-6b",
|
||||
"api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
|
||||
|
|
@ -59,12 +55,6 @@ llm_model_dict = {
|
|||
"api_key": "EMPTY"
|
||||
},
|
||||
|
||||
"vicuna-13b-hf": {
|
||||
"local_model_path": "",
|
||||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||||
"api_key": "EMPTY"
|
||||
},
|
||||
|
||||
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||||
# Max retries exceeded with url: /v1/chat/completions
|
||||
# 则需要将urllib3版本修改为1.25.11
|
||||
|
|
@ -75,10 +65,15 @@ llm_model_dict = {
|
|||
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
|
||||
# Failed to establish a new connection: [WinError 10060]
|
||||
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
|
||||
|
||||
# 如果出现WARNING: Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in
|
||||
# 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI.
|
||||
# 需要添加代理访问(正常开的代理软件可能会拦截不上)需要设置配置openai_proxy 或者 使用环境遍历OPENAI_PROXY 进行设置
|
||||
"gpt-3.5-turbo": {
|
||||
"local_model_path": "gpt-3.5-turbo",
|
||||
"api_base_url": "https://api.openai.com/v1",
|
||||
"api_key": os.environ.get("OPENAI_API_KEY")
|
||||
"api_key": os.environ.get("OPENAI_API_KEY"),
|
||||
"openai_proxy": os.environ.get("OPENAI_PROXY")
|
||||
},
|
||||
}
|
||||
|
||||
|
|
@ -114,7 +109,7 @@ kbs_config = {
|
|||
"secure": False,
|
||||
},
|
||||
"pg": {
|
||||
"connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatglm",
|
||||
"connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat",
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -142,12 +137,12 @@ SEARCH_ENGINE_TOP_K = 5
|
|||
# nltk 模型存储路径
|
||||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
||||
|
||||
# 基于本地知识问答的提示词模版
|
||||
PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。
|
||||
# 基于本地知识问答的提示词模版(使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号
|
||||
PROMPT_TEMPLATE = """<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。 </指令>
|
||||
|
||||
【已知信息】{context}
|
||||
<已知信息>{{ context }}</已知信息>
|
||||
|
||||
【问题】{question}"""
|
||||
<问题>{{ question }}</问题>"""
|
||||
|
||||
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||||
# is open cross domain
|
||||
|
|
|
|||
13
docs/FAQ.md
13
docs/FAQ.md
|
|
@ -170,3 +170,16 @@ A13: 疑为 chatglm 的 quantization 的问题或 torch 版本差异问题,针
|
|||
Q14: 修改配置中路径后,加载 text2vec-large-chinese 依然提示 `WARNING: No sentence-transformers model found with name text2vec-large-chinese. Creating a new one with MEAN pooling.`
|
||||
|
||||
A14: 尝试更换 embedding,如 text2vec-base-chinese,请在 [configs/model_config.py](../configs/model_config.py) 文件中,修改 `text2vec-base`参数为本地路径,绝对路径或者相对路径均可
|
||||
|
||||
|
||||
---
|
||||
|
||||
Q15: 使用pg向量库建表报错
|
||||
|
||||
A15: 需要手动安装对应的vector扩展(连接pg执行 CREATE EXTENSION IF NOT EXISTS vector)
|
||||
|
||||
---
|
||||
|
||||
Q16: pymilvus 连接超时
|
||||
|
||||
A16.pymilvus版本需要匹配和milvus对应否则会超时参考pymilvus==2.1.3
|
||||
|
|
@ -2,9 +2,9 @@ version: "3.8"
|
|||
services:
|
||||
postgresql:
|
||||
image: ankane/pgvector:v0.4.1
|
||||
container_name: langchain-chatgml-pg-db
|
||||
container_name: langchain_chatchat-pg-db
|
||||
environment:
|
||||
POSTGRES_DB: langchain_chatgml
|
||||
POSTGRES_DB: langchain_chatchat
|
||||
POSTGRES_USER: postgres
|
||||
POSTGRES_PASSWORD: postgres
|
||||
ports:
|
||||
|
|
|
|||
|
|
@ -5,3 +5,4 @@
|
|||
cd docs/docker/vector_db/milvus
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
|
|
|
|||
Binary file not shown.
|
After Width: | Height: | Size: 291 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 200 KiB |
|
|
@ -2,6 +2,8 @@ from server.knowledge_base.migrate import create_tables, folder2db, recreate_all
|
|||
from configs.model_config import NLTK_DATA_PATH
|
||||
import nltk
|
||||
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
||||
from startup import dump_server_info
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
|
@ -21,6 +23,8 @@ if __name__ == "__main__":
|
|||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
dump_server_info()
|
||||
|
||||
create_tables()
|
||||
print("database talbes created")
|
||||
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ def chat(query: str = Body(..., description="用户输入", examples=["恼羞成
|
|||
),
|
||||
stream: bool = Body(False, description="流式输出"),
|
||||
):
|
||||
history = [History(**h) if isinstance(h, dict) else h for h in history]
|
||||
history = [History.from_data(h) for h in history]
|
||||
|
||||
async def chat_iterator(query: str,
|
||||
history: List[History] = [],
|
||||
|
|
@ -34,11 +34,13 @@ def chat(query: str = Body(..., description="用户输入", examples=["恼羞成
|
|||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
model_name=LLM_MODEL,
|
||||
openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
|
||||
)
|
||||
|
||||
input_msg = History(role="user", content="{{ input }}").to_msg_template(False)
|
||||
chat_prompt = ChatPromptTemplate.from_messages(
|
||||
[i.to_msg_tuple() for i in history] + [("human", "{input}")])
|
||||
[i.to_msg_template() for i in history] + [input_msg])
|
||||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||||
|
||||
# Begin a task that runs in the background.
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
|
|||
if kb is None:
|
||||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||||
|
||||
history = [History(**h) if isinstance(h, dict) else h for h in history]
|
||||
history = [History.from_data(h) for h in history]
|
||||
|
||||
async def knowledge_base_chat_iterator(query: str,
|
||||
kb: KBService,
|
||||
|
|
@ -52,13 +52,15 @@ def knowledge_base_chat(query: str = Body(..., description="用户输入", examp
|
|||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
model_name=LLM_MODEL,
|
||||
openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
|
||||
)
|
||||
docs = search_docs(query, knowledge_base_name, top_k, score_threshold)
|
||||
context = "\n".join([doc.page_content for doc in docs])
|
||||
|
||||
input_msg = History(role="user", content=PROMPT_TEMPLATE).to_msg_template(False)
|
||||
chat_prompt = ChatPromptTemplate.from_messages(
|
||||
[i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)])
|
||||
[i.to_msg_template() for i in history] + [input_msg])
|
||||
|
||||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||||
|
||||
|
|
|
|||
|
|
@ -73,6 +73,8 @@ def search_engine_chat(query: str = Body(..., description="用户输入", exampl
|
|||
if search_engine_name not in SEARCH_ENGINES.keys():
|
||||
return BaseResponse(code=404, msg=f"未支持搜索引擎 {search_engine_name}")
|
||||
|
||||
history = [History.from_data(h) for h in history]
|
||||
|
||||
async def search_engine_chat_iterator(query: str,
|
||||
search_engine_name: str,
|
||||
top_k: int,
|
||||
|
|
@ -85,14 +87,16 @@ def search_engine_chat(query: str = Body(..., description="用户输入", exampl
|
|||
callbacks=[callback],
|
||||
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
|
||||
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
|
||||
model_name=LLM_MODEL
|
||||
model_name=LLM_MODEL,
|
||||
openai_proxy=llm_model_dict[LLM_MODEL].get("openai_proxy")
|
||||
)
|
||||
|
||||
docs = lookup_search_engine(query, search_engine_name, top_k)
|
||||
context = "\n".join([doc.page_content for doc in docs])
|
||||
|
||||
input_msg = History(role="user", content=PROMPT_TEMPLATE).to_msg_template(False)
|
||||
chat_prompt = ChatPromptTemplate.from_messages(
|
||||
[i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)])
|
||||
[i.to_msg_template() for i in history] + [input_msg])
|
||||
|
||||
chain = LLMChain(prompt=chat_prompt, llm=model)
|
||||
|
||||
|
|
@ -117,7 +121,7 @@ def search_engine_chat(query: str = Body(..., description="用户输入", exampl
|
|||
answer = ""
|
||||
async for token in callback.aiter():
|
||||
answer += token
|
||||
yield json.dumps({"answer": token,
|
||||
yield json.dumps({"answer": answer,
|
||||
"docs": source_documents},
|
||||
ensure_ascii=False)
|
||||
await task
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
import asyncio
|
||||
from typing import Awaitable
|
||||
from typing import Awaitable, List, Tuple, Dict, Union
|
||||
from pydantic import BaseModel, Field
|
||||
from langchain.prompts.chat import ChatMessagePromptTemplate
|
||||
|
||||
|
||||
async def wrap_done(fn: Awaitable, event: asyncio.Event):
|
||||
|
|
@ -28,3 +29,29 @@ class History(BaseModel):
|
|||
|
||||
def to_msg_tuple(self):
|
||||
return "ai" if self.role=="assistant" else "human", self.content
|
||||
|
||||
def to_msg_template(self, is_raw=True) -> ChatMessagePromptTemplate:
|
||||
role_maps = {
|
||||
"ai": "assistant",
|
||||
"human": "user",
|
||||
}
|
||||
role = role_maps.get(self.role, self.role)
|
||||
if is_raw: # 当前默认历史消息都是没有input_variable的文本。
|
||||
content = "{% raw %}" + self.content + "{% endraw %}"
|
||||
else:
|
||||
content = self.content
|
||||
|
||||
return ChatMessagePromptTemplate.from_template(
|
||||
content,
|
||||
"jinja2",
|
||||
role=role,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_data(cls, h: Union[List, Tuple, Dict]) -> "History":
|
||||
if isinstance(h, (list,tuple)) and len(h) >= 2:
|
||||
h = cls(role=h[0], content=h[1])
|
||||
elif isinstance(h, dict):
|
||||
h = cls(**h)
|
||||
|
||||
return h
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@ async def list_kbs():
|
|||
async def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
vector_store_type: str = Body("faiss"),
|
||||
embed_model: str = Body(EMBEDDING_MODEL),
|
||||
):
|
||||
) -> BaseResponse:
|
||||
# Create selected knowledge base
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return BaseResponse(code=403, msg="Don't attack me")
|
||||
|
|
@ -27,13 +27,18 @@ async def create_kb(knowledge_base_name: str = Body(..., examples=["samples"]),
|
|||
return BaseResponse(code=404, msg=f"已存在同名知识库 {knowledge_base_name}")
|
||||
|
||||
kb = KBServiceFactory.get_service(knowledge_base_name, vector_store_type, embed_model)
|
||||
kb.create_kb()
|
||||
try:
|
||||
kb.create_kb()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"创建知识库出错: {e}")
|
||||
|
||||
return BaseResponse(code=200, msg=f"已新增知识库 {knowledge_base_name}")
|
||||
|
||||
|
||||
async def delete_kb(
|
||||
knowledge_base_name: str = Body(..., examples=["samples"])
|
||||
):
|
||||
) -> BaseResponse:
|
||||
# Delete selected knowledge base
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return BaseResponse(code=403, msg="Don't attack me")
|
||||
|
|
@ -51,5 +56,6 @@ async def delete_kb(
|
|||
return BaseResponse(code=200, msg=f"成功删除知识库 {knowledge_base_name}")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"删除知识库时出现意外: {e}")
|
||||
|
||||
return BaseResponse(code=500, msg=f"删除知识库失败 {knowledge_base_name}")
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ def search_docs(query: str = Body(..., description="用户输入", examples=["
|
|||
) -> List[DocumentWithScore]:
|
||||
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
|
||||
if kb is None:
|
||||
return {"code": 404, "msg": f"未找到知识库 {knowledge_base_name}", "docs": []}
|
||||
return []
|
||||
docs = kb.search_docs(query, top_k, score_threshold)
|
||||
data = [DocumentWithScore(**x[0].dict(), score=x[1]) for x in docs]
|
||||
|
||||
|
|
@ -31,7 +31,7 @@ def search_docs(query: str = Body(..., description="用户输入", examples=["
|
|||
|
||||
async def list_docs(
|
||||
knowledge_base_name: str
|
||||
):
|
||||
) -> ListResponse:
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return ListResponse(code=403, msg="Don't attack me", data=[])
|
||||
|
||||
|
|
@ -41,13 +41,14 @@ async def list_docs(
|
|||
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
|
||||
else:
|
||||
all_doc_names = kb.list_docs()
|
||||
return ListResponse(data=all_doc_names)
|
||||
return ListResponse(data=all_doc_names)
|
||||
|
||||
|
||||
async def upload_doc(file: UploadFile = File(..., description="上传文件"),
|
||||
knowledge_base_name: str = Form(..., description="知识库名称", examples=["kb1"]),
|
||||
override: bool = Form(False, description="覆盖已有文件"),
|
||||
):
|
||||
not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"),
|
||||
) -> BaseResponse:
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return BaseResponse(code=403, msg="Don't attack me")
|
||||
|
||||
|
|
@ -57,31 +58,38 @@ async def upload_doc(file: UploadFile = File(..., description="上传文件"),
|
|||
|
||||
file_content = await file.read() # 读取上传文件的内容
|
||||
|
||||
kb_file = KnowledgeFile(filename=file.filename,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
|
||||
if (os.path.exists(kb_file.filepath)
|
||||
and not override
|
||||
and os.path.getsize(kb_file.filepath) == len(file_content)
|
||||
):
|
||||
# TODO: filesize 不同后的处理
|
||||
file_status = f"文件 {kb_file.filename} 已存在。"
|
||||
return BaseResponse(code=404, msg=file_status)
|
||||
|
||||
try:
|
||||
kb_file = KnowledgeFile(filename=file.filename,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
|
||||
if (os.path.exists(kb_file.filepath)
|
||||
and not override
|
||||
and os.path.getsize(kb_file.filepath) == len(file_content)
|
||||
):
|
||||
# TODO: filesize 不同后的处理
|
||||
file_status = f"文件 {kb_file.filename} 已存在。"
|
||||
return BaseResponse(code=404, msg=file_status)
|
||||
|
||||
with open(kb_file.filepath, "wb") as f:
|
||||
f.write(file_content)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件上传失败,报错信息为: {e}")
|
||||
|
||||
kb.add_doc(kb_file)
|
||||
try:
|
||||
kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件向量化失败,报错信息为: {e}")
|
||||
|
||||
return BaseResponse(code=200, msg=f"成功上传文件 {kb_file.filename}")
|
||||
|
||||
|
||||
async def delete_doc(knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
doc_name: str = Body(..., examples=["file_name.md"]),
|
||||
delete_content: bool = Body(False),
|
||||
):
|
||||
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
|
||||
) -> BaseResponse:
|
||||
if not validate_kb_name(knowledge_base_name):
|
||||
return BaseResponse(code=403, msg="Don't attack me")
|
||||
|
||||
|
|
@ -92,17 +100,23 @@ async def delete_doc(knowledge_base_name: str = Body(..., examples=["samples"]),
|
|||
|
||||
if not kb.exist_doc(doc_name):
|
||||
return BaseResponse(code=404, msg=f"未找到文件 {doc_name}")
|
||||
kb_file = KnowledgeFile(filename=doc_name,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
kb.delete_doc(kb_file, delete_content)
|
||||
|
||||
try:
|
||||
kb_file = KnowledgeFile(filename=doc_name,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
kb.delete_doc(kb_file, delete_content, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件删除失败,错误信息:{e}")
|
||||
|
||||
return BaseResponse(code=200, msg=f"{kb_file.filename} 文件删除成功")
|
||||
# return BaseResponse(code=500, msg=f"{kb_file.filename} 文件删除失败")
|
||||
|
||||
|
||||
async def update_doc(
|
||||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||||
file_name: str = Body(..., examples=["file_name"]),
|
||||
):
|
||||
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
|
||||
) -> BaseResponse:
|
||||
'''
|
||||
更新知识库文档
|
||||
'''
|
||||
|
|
@ -113,14 +127,17 @@ async def update_doc(
|
|||
if kb is None:
|
||||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||||
|
||||
kb_file = KnowledgeFile(filename=file_name,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
try:
|
||||
kb_file = KnowledgeFile(filename=file_name,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
if os.path.exists(kb_file.filepath):
|
||||
kb.update_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
return BaseResponse(code=200, msg=f"成功更新文件 {kb_file.filename}")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件更新失败,错误信息是:{e}")
|
||||
|
||||
if os.path.exists(kb_file.filepath):
|
||||
kb.update_doc(kb_file)
|
||||
return BaseResponse(code=200, msg=f"成功更新文件 {kb_file.filename}")
|
||||
else:
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件更新失败")
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 文件更新失败")
|
||||
|
||||
|
||||
async def download_doc(
|
||||
|
|
@ -137,18 +154,20 @@ async def download_doc(
|
|||
if kb is None:
|
||||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||||
|
||||
kb_file = KnowledgeFile(filename=file_name,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
|
||||
if os.path.exists(kb_file.filepath):
|
||||
return FileResponse(
|
||||
path=kb_file.filepath,
|
||||
filename=kb_file.filename,
|
||||
media_type="multipart/form-data")
|
||||
else:
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败")
|
||||
try:
|
||||
kb_file = KnowledgeFile(filename=file_name,
|
||||
knowledge_base_name=knowledge_base_name)
|
||||
|
||||
if os.path.exists(kb_file.filepath):
|
||||
return FileResponse(
|
||||
path=kb_file.filepath,
|
||||
filename=kb_file.filename,
|
||||
media_type="multipart/form-data")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败,错误信息是:{e}")
|
||||
|
||||
return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败")
|
||||
|
||||
|
||||
async def recreate_vector_store(
|
||||
|
|
@ -163,24 +182,35 @@ async def recreate_vector_store(
|
|||
by default, get_service_by_name only return knowledge base in the info.db and having document files in it.
|
||||
set allow_empty_kb to True make it applied on empty knowledge base which it not in the info.db or having no documents.
|
||||
'''
|
||||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||||
if not kb.exists() and not allow_empty_kb:
|
||||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
|
||||
|
||||
async def output(kb):
|
||||
kb.create_kb()
|
||||
kb.clear_vs()
|
||||
docs = list_docs_from_folder(knowledge_base_name)
|
||||
for i, doc in enumerate(docs):
|
||||
try:
|
||||
kb_file = KnowledgeFile(doc, knowledge_base_name)
|
||||
yield json.dumps({
|
||||
"total": len(docs),
|
||||
"finished": i,
|
||||
"doc": doc,
|
||||
}, ensure_ascii=False)
|
||||
kb.add_doc(kb_file)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
async def output():
|
||||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||||
if not kb.exists() and not allow_empty_kb:
|
||||
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
|
||||
else:
|
||||
kb.create_kb()
|
||||
kb.clear_vs()
|
||||
docs = list_docs_from_folder(knowledge_base_name)
|
||||
for i, doc in enumerate(docs):
|
||||
try:
|
||||
kb_file = KnowledgeFile(doc, knowledge_base_name)
|
||||
yield json.dumps({
|
||||
"code": 200,
|
||||
"msg": f"({i + 1} / {len(docs)}): {doc}",
|
||||
"total": len(docs),
|
||||
"finished": i,
|
||||
"doc": doc,
|
||||
}, ensure_ascii=False)
|
||||
if i == len(docs) - 1:
|
||||
not_refresh_vs_cache = False
|
||||
else:
|
||||
not_refresh_vs_cache = True
|
||||
kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
yield json.dumps({
|
||||
"code": 500,
|
||||
"msg": f"添加文件‘{doc}’到知识库‘{knowledge_base_name}’时出错:{e}。已跳过。",
|
||||
})
|
||||
|
||||
return StreamingResponse(output(kb), media_type="text/event-stream")
|
||||
return StreamingResponse(output(), media_type="text/event-stream")
|
||||
|
|
|
|||
|
|
@ -71,36 +71,37 @@ class KBService(ABC):
|
|||
status = delete_kb_from_db(self.kb_name)
|
||||
return status
|
||||
|
||||
def add_doc(self, kb_file: KnowledgeFile):
|
||||
def add_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||||
"""
|
||||
向知识库添加文件
|
||||
"""
|
||||
docs = kb_file.file2text()
|
||||
if docs:
|
||||
self.delete_doc(kb_file)
|
||||
embeddings = self._load_embeddings()
|
||||
self.do_add_doc(docs, embeddings)
|
||||
self.do_add_doc(docs, embeddings, **kwargs)
|
||||
status = add_doc_to_db(kb_file)
|
||||
else:
|
||||
status = False
|
||||
return status
|
||||
|
||||
def delete_doc(self, kb_file: KnowledgeFile, delete_content: bool = False):
|
||||
def delete_doc(self, kb_file: KnowledgeFile, delete_content: bool = False, **kwargs):
|
||||
"""
|
||||
从知识库删除文件
|
||||
"""
|
||||
self.do_delete_doc(kb_file)
|
||||
self.do_delete_doc(kb_file, **kwargs)
|
||||
status = delete_file_from_db(kb_file)
|
||||
if delete_content and os.path.exists(kb_file.filepath):
|
||||
os.remove(kb_file.filepath)
|
||||
return status
|
||||
|
||||
def update_doc(self, kb_file: KnowledgeFile):
|
||||
def update_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||||
"""
|
||||
使用content中的文件更新向量库
|
||||
"""
|
||||
if os.path.exists(kb_file.filepath):
|
||||
self.delete_doc(kb_file)
|
||||
return self.add_doc(kb_file)
|
||||
self.delete_doc(kb_file, **kwargs)
|
||||
return self.add_doc(kb_file, **kwargs)
|
||||
|
||||
def exist_doc(self, file_name: str):
|
||||
return doc_exists(KnowledgeFile(knowledge_base_name=self.kb_name,
|
||||
|
|
|
|||
|
|
@ -13,7 +13,8 @@ from functools import lru_cache
|
|||
from server.knowledge_base.utils import get_vs_path, load_embeddings, KnowledgeFile
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings,HuggingFaceBgeEmbeddings
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from typing import List
|
||||
from langchain.docstore.document import Document
|
||||
from server.utils import torch_gc
|
||||
|
|
@ -21,10 +22,19 @@ from server.utils import torch_gc
|
|||
|
||||
# make HuggingFaceEmbeddings hashable
|
||||
def _embeddings_hash(self):
|
||||
return hash(self.model_name)
|
||||
|
||||
if isinstance(self, HuggingFaceEmbeddings):
|
||||
return hash(self.model_name)
|
||||
elif isinstance(self, HuggingFaceBgeEmbeddings):
|
||||
return hash(self.model_name)
|
||||
elif isinstance(self, OpenAIEmbeddings):
|
||||
return hash(self.model)
|
||||
|
||||
HuggingFaceEmbeddings.__hash__ = _embeddings_hash
|
||||
OpenAIEmbeddings.__hash__ = _embeddings_hash
|
||||
HuggingFaceBgeEmbeddings.__hash__ = _embeddings_hash
|
||||
|
||||
_VECTOR_STORE_TICKS = {}
|
||||
|
||||
|
||||
_VECTOR_STORE_TICKS = {}
|
||||
|
||||
|
|
@ -41,7 +51,23 @@ def load_vector_store(
|
|||
vs_path = get_vs_path(knowledge_base_name)
|
||||
if embeddings is None:
|
||||
embeddings = load_embeddings(embed_model, embed_device)
|
||||
search_index = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
|
||||
|
||||
if not os.path.exists(vs_path):
|
||||
os.makedirs(vs_path)
|
||||
|
||||
if "index.faiss" in os.listdir(vs_path):
|
||||
search_index = FAISS.load_local(vs_path, embeddings, normalize_L2=True)
|
||||
else:
|
||||
# create an empty vector store
|
||||
doc = Document(page_content="init", metadata={})
|
||||
search_index = FAISS.from_documents([doc], embeddings, normalize_L2=True)
|
||||
ids = [k for k, v in search_index.docstore._dict.items()]
|
||||
search_index.delete(ids)
|
||||
search_index.save_local(vs_path)
|
||||
|
||||
if tick == 0: # vector store is loaded first time
|
||||
_VECTOR_STORE_TICKS[knowledge_base_name] = 0
|
||||
|
||||
return search_index
|
||||
|
||||
|
||||
|
|
@ -50,6 +76,7 @@ def refresh_vs_cache(kb_name: str):
|
|||
make vector store cache refreshed when next loading
|
||||
"""
|
||||
_VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1
|
||||
print(f"知识库 {kb_name} 缓存刷新:{_VECTOR_STORE_TICKS[kb_name]}")
|
||||
|
||||
|
||||
class FaissKBService(KBService):
|
||||
|
|
@ -74,8 +101,10 @@ class FaissKBService(KBService):
|
|||
def do_create_kb(self):
|
||||
if not os.path.exists(self.vs_path):
|
||||
os.makedirs(self.vs_path)
|
||||
load_vector_store(self.kb_name)
|
||||
|
||||
def do_drop_kb(self):
|
||||
self.clear_vs()
|
||||
shutil.rmtree(self.kb_path)
|
||||
|
||||
def do_search(self,
|
||||
|
|
@ -93,38 +122,40 @@ class FaissKBService(KBService):
|
|||
def do_add_doc(self,
|
||||
docs: List[Document],
|
||||
embeddings: Embeddings,
|
||||
**kwargs,
|
||||
):
|
||||
if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path):
|
||||
vector_store = FAISS.load_local(self.vs_path, embeddings, normalize_L2=True)
|
||||
vector_store.add_documents(docs)
|
||||
torch_gc()
|
||||
else:
|
||||
if not os.path.exists(self.vs_path):
|
||||
os.makedirs(self.vs_path)
|
||||
vector_store = FAISS.from_documents(
|
||||
docs, embeddings, normalize_L2=True) # docs 为Document列表
|
||||
torch_gc()
|
||||
vector_store.save_local(self.vs_path)
|
||||
refresh_vs_cache(self.kb_name)
|
||||
|
||||
def do_delete_doc(self,
|
||||
kb_file: KnowledgeFile):
|
||||
embeddings = self._load_embeddings()
|
||||
if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path):
|
||||
vector_store = FAISS.load_local(self.vs_path, embeddings, normalize_L2=True)
|
||||
ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
|
||||
if len(ids) == 0:
|
||||
return None
|
||||
vector_store.delete(ids)
|
||||
vector_store = load_vector_store(self.kb_name,
|
||||
embeddings=embeddings,
|
||||
tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0))
|
||||
vector_store.add_documents(docs)
|
||||
torch_gc()
|
||||
if not kwargs.get("not_refresh_vs_cache"):
|
||||
vector_store.save_local(self.vs_path)
|
||||
refresh_vs_cache(self.kb_name)
|
||||
return True
|
||||
else:
|
||||
|
||||
def do_delete_doc(self,
|
||||
kb_file: KnowledgeFile,
|
||||
**kwargs):
|
||||
embeddings = self._load_embeddings()
|
||||
vector_store = load_vector_store(self.kb_name,
|
||||
embeddings=embeddings,
|
||||
tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0))
|
||||
|
||||
ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath]
|
||||
if len(ids) == 0:
|
||||
return None
|
||||
|
||||
vector_store.delete(ids)
|
||||
if not kwargs.get("not_refresh_vs_cache"):
|
||||
vector_store.save_local(self.vs_path)
|
||||
refresh_vs_cache(self.kb_name)
|
||||
|
||||
return True
|
||||
|
||||
def do_clear_vs(self):
|
||||
shutil.rmtree(self.vs_path)
|
||||
os.makedirs(self.vs_path)
|
||||
refresh_vs_cache(self.kb_name)
|
||||
|
||||
def exist_doc(self, file_name: str):
|
||||
if super().exist_doc(file_name):
|
||||
|
|
|
|||
|
|
@ -45,12 +45,12 @@ class MilvusKBService(KBService):
|
|||
def do_drop_kb(self):
|
||||
self.milvus.col.drop()
|
||||
|
||||
def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings) -> List[Document]:
|
||||
def do_search(self, query: str, top_k: int, embeddings: Embeddings):
|
||||
# todo: support score threshold
|
||||
self._load_milvus(embeddings=embeddings)
|
||||
return self.milvus.similarity_search(query, top_k, score_threshold=SCORE_THRESHOLD)
|
||||
return self.milvus.similarity_search_with_score(query, top_k)
|
||||
|
||||
def add_doc(self, kb_file: KnowledgeFile):
|
||||
def add_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||||
"""
|
||||
向知识库添加文件
|
||||
"""
|
||||
|
|
@ -60,10 +60,10 @@ class MilvusKBService(KBService):
|
|||
status = add_doc_to_db(kb_file)
|
||||
return status
|
||||
|
||||
def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
|
||||
def do_add_doc(self, docs: List[Document], embeddings: Embeddings, **kwargs):
|
||||
pass
|
||||
|
||||
def do_delete_doc(self, kb_file: KnowledgeFile):
|
||||
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||||
filepath = kb_file.filepath.replace('\\', '\\\\')
|
||||
delete_list = [item.get("pk") for item in
|
||||
self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])]
|
||||
|
|
@ -76,6 +76,7 @@ class MilvusKBService(KBService):
|
|||
if __name__ == '__main__':
|
||||
# 测试建表使用
|
||||
from server.db.base import Base, engine
|
||||
|
||||
Base.metadata.create_all(bind=engine)
|
||||
milvusService = MilvusKBService("test")
|
||||
milvusService.add_doc(KnowledgeFile("README.md", "test"))
|
||||
|
|
|
|||
|
|
@ -43,12 +43,12 @@ class PGKBService(KBService):
|
|||
'''))
|
||||
connect.commit()
|
||||
|
||||
def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings) -> List[Document]:
|
||||
def do_search(self, query: str, top_k: int, embeddings: Embeddings):
|
||||
# todo: support score threshold
|
||||
self._load_pg_vector(embeddings=embeddings)
|
||||
return self.pg_vector.similarity_search(query, top_k)
|
||||
return self.pg_vector.similarity_search_with_score(query, top_k)
|
||||
|
||||
def add_doc(self, kb_file: KnowledgeFile):
|
||||
def add_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||||
"""
|
||||
向知识库添加文件
|
||||
"""
|
||||
|
|
@ -58,10 +58,10 @@ class PGKBService(KBService):
|
|||
status = add_doc_to_db(kb_file)
|
||||
return status
|
||||
|
||||
def do_add_doc(self, docs: List[Document], embeddings: Embeddings):
|
||||
def do_add_doc(self, docs: List[Document], embeddings: Embeddings, **kwargs):
|
||||
pass
|
||||
|
||||
def do_delete_doc(self, kb_file: KnowledgeFile):
|
||||
def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs):
|
||||
with self.pg_vector.connect() as connect:
|
||||
filepath = kb_file.filepath.replace('\\', '\\\\')
|
||||
connect.execute(
|
||||
|
|
@ -76,6 +76,7 @@ class PGKBService(KBService):
|
|||
|
||||
if __name__ == '__main__':
|
||||
from server.db.base import Base, engine
|
||||
|
||||
Base.metadata.create_all(bind=engine)
|
||||
pGKBService = PGKBService("test")
|
||||
pGKBService.create_kb()
|
||||
|
|
|
|||
|
|
@ -43,7 +43,11 @@ def folder2db(
|
|||
kb_file = KnowledgeFile(doc, kb_name)
|
||||
if callable(callback_before):
|
||||
callback_before(kb_file, i, docs)
|
||||
kb.add_doc(kb_file)
|
||||
if i == len(docs) - 1:
|
||||
not_refresh_vs_cache = False
|
||||
else:
|
||||
not_refresh_vs_cache = True
|
||||
kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
if callable(callback_after):
|
||||
callback_after(kb_file, i, docs)
|
||||
except Exception as e:
|
||||
|
|
@ -67,7 +71,11 @@ def folder2db(
|
|||
kb_file = KnowledgeFile(doc, kb_name)
|
||||
if callable(callback_before):
|
||||
callback_before(kb_file, i, docs)
|
||||
kb.update_doc(kb_file)
|
||||
if i == len(docs) - 1:
|
||||
not_refresh_vs_cache = False
|
||||
else:
|
||||
not_refresh_vs_cache = True
|
||||
kb.update_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
if callable(callback_after):
|
||||
callback_after(kb_file, i, docs)
|
||||
except Exception as e:
|
||||
|
|
@ -81,7 +89,11 @@ def folder2db(
|
|||
kb_file = KnowledgeFile(doc, kb_name)
|
||||
if callable(callback_before):
|
||||
callback_before(kb_file, i, docs)
|
||||
kb.add_doc(kb_file)
|
||||
if i == len(docs) - 1:
|
||||
not_refresh_vs_cache = False
|
||||
else:
|
||||
not_refresh_vs_cache = True
|
||||
kb.add_doc(kb_file, not_refresh_vs_cache=not_refresh_vs_cache)
|
||||
if callable(callback_after):
|
||||
callback_after(kb_file, i, docs)
|
||||
except Exception as e:
|
||||
|
|
|
|||
|
|
@ -1,5 +1,7 @@
|
|||
import os
|
||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
||||
from configs.model_config import (
|
||||
embedding_model_dict,
|
||||
KB_ROOT_PATH,
|
||||
|
|
@ -41,11 +43,20 @@ def list_docs_from_folder(kb_name: str):
|
|||
|
||||
@lru_cache(1)
|
||||
def load_embeddings(model: str, device: str):
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model],
|
||||
model_kwargs={'device': device})
|
||||
if model == "text-embedding-ada-002": # openai text-embedding-ada-002
|
||||
embeddings = OpenAIEmbeddings(openai_api_key=embedding_model_dict[model], chunk_size=CHUNK_SIZE)
|
||||
elif 'bge-' in model:
|
||||
embeddings = HuggingFaceBgeEmbeddings(model_name=embedding_model_dict[model],
|
||||
model_kwargs={'device': device},
|
||||
query_instruction="为这个句子生成表示以用于检索相关文章:")
|
||||
if model == "bge-large-zh-noinstruct": # bge large -noinstruct embedding
|
||||
embeddings.query_instruction = ""
|
||||
else:
|
||||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model], model_kwargs={'device': device})
|
||||
return embeddings
|
||||
|
||||
|
||||
|
||||
LOADER_DICT = {"UnstructuredFileLoader": ['.eml', '.html', '.json', '.md', '.msg', '.rst',
|
||||
'.rtf', '.txt', '.xml',
|
||||
'.doc', '.docx', '.epub', '.odt', '.pdf',
|
||||
|
|
|
|||
|
|
@ -9,8 +9,8 @@ from typing import Any, Optional
|
|||
|
||||
|
||||
class BaseResponse(BaseModel):
|
||||
code: int = pydantic.Field(200, description="HTTP status code")
|
||||
msg: str = pydantic.Field("success", description="HTTP status message")
|
||||
code: int = pydantic.Field(200, description="API status code")
|
||||
msg: str = pydantic.Field("success", description="API status message")
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
|
|
|
|||
72
startup.py
72
startup.py
|
|
@ -5,6 +5,14 @@ import sys
|
|||
import os
|
||||
from pprint import pprint
|
||||
|
||||
# 设置numexpr最大线程数,默认为CPU核心数
|
||||
try:
|
||||
import numexpr
|
||||
n_cores = numexpr.utils.detect_number_of_cores()
|
||||
os.environ["NUMEXPR_MAX_THREADS"] = str(n_cores)
|
||||
except:
|
||||
pass
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
||||
from configs.model_config import EMBEDDING_DEVICE, EMBEDDING_MODEL, llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, \
|
||||
logger
|
||||
|
|
@ -252,35 +260,36 @@ def run_webui(q: Queue, run_seq: int = 5):
|
|||
def parse_args() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-a",
|
||||
"--all-webui",
|
||||
action="store_true",
|
||||
help="run fastchat's controller/model_worker/openai_api servers, run api.py and webui.py",
|
||||
help="run fastchat's controller/openai_api/model_worker servers, run api.py and webui.py",
|
||||
dest="all_webui",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--all-api",
|
||||
action="store_true",
|
||||
help="run fastchat's controller/model_worker/openai_api servers, run api.py and webui.py",
|
||||
help="run fastchat's controller/openai_api/model_worker servers, run api.py",
|
||||
dest="all_api",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-api",
|
||||
action="store_true",
|
||||
help="run fastchat's controller/model_worker/openai_api servers, run api.py and webui.py",
|
||||
help="run fastchat's controller/openai_api/model_worker servers",
|
||||
dest="llm_api",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--openai-api",
|
||||
action="store_true",
|
||||
help="run fastchat controller/openai_api servers",
|
||||
help="run fastchat's controller/openai_api servers",
|
||||
dest="openai_api",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m",
|
||||
"--model-worker",
|
||||
action="store_true",
|
||||
help="run fastchat model_worker server with specified model name. specify --model-name if not using default LLM_MODEL",
|
||||
help="run fastchat's model_worker server with specified model name. specify --model-name if not using default LLM_MODEL",
|
||||
dest="model_worker",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
|
@ -315,13 +324,39 @@ def parse_args() -> argparse.ArgumentParser:
|
|||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def dump_server_info(after_start=False):
|
||||
import platform
|
||||
import time
|
||||
import langchain
|
||||
import fastchat
|
||||
from configs.server_config import api_address, webui_address
|
||||
|
||||
print("\n\n")
|
||||
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
|
||||
print(f"操作系统:{platform.platform()}.")
|
||||
print(f"python版本:{sys.version}")
|
||||
print(f"项目版本:{VERSION}")
|
||||
print(f"langchain版本:{langchain.__version__}. fastchat版本:{fastchat.__version__}")
|
||||
print("\n")
|
||||
print(f"当前LLM模型:{LLM_MODEL} @ {LLM_DEVICE}")
|
||||
pprint(llm_model_dict[LLM_MODEL])
|
||||
print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {EMBEDDING_DEVICE}")
|
||||
if after_start:
|
||||
print("\n")
|
||||
print(f"服务端运行信息:")
|
||||
if args.openai_api:
|
||||
print(f" OpenAI API Server: {fschat_openai_api_address()}/v1")
|
||||
print(" (请确认llm_model_dict中配置的api_base_url与上面地址一致。)")
|
||||
if args.api:
|
||||
print(f" Chatchat API Server: {api_address()}")
|
||||
if args.webui:
|
||||
print(f" Chatchat WEBUI Server: {webui_address()}")
|
||||
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
|
||||
print("\n\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import time
|
||||
|
||||
mp.set_start_method("spawn")
|
||||
queue = Queue()
|
||||
args = parse_args()
|
||||
|
|
@ -343,6 +378,7 @@ if __name__ == "__main__":
|
|||
args.api = False
|
||||
args.webui = False
|
||||
|
||||
dump_server_info()
|
||||
logger.info(f"正在启动服务:")
|
||||
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
|
||||
|
||||
|
|
@ -403,27 +439,7 @@ if __name__ == "__main__":
|
|||
no = queue.get()
|
||||
if no == len(processes):
|
||||
time.sleep(0.5)
|
||||
print("\n\n")
|
||||
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
|
||||
print(f"操作系统:{platform.platform()}.")
|
||||
print(f"python版本:{sys.version}")
|
||||
print(f"项目版本:{VERSION}")
|
||||
print(f"langchain版本:{langchain.__version__}. fastchat版本:{fastchat.__version__}")
|
||||
print("\n")
|
||||
print(f"当前LLM模型:{LLM_MODEL} @ {LLM_DEVICE}")
|
||||
pprint(llm_model_dict[LLM_MODEL])
|
||||
print(f"当前Embbedings模型: {EMBEDDING_MODEL} @ {EMBEDDING_DEVICE}")
|
||||
print("\n")
|
||||
print(f"服务端运行信息:")
|
||||
if args.openai_api:
|
||||
print(f" OpenAI API Server: {fschat_openai_api_address()}/v1")
|
||||
print("请确认llm_model_dict中配置的api_base_url与上面地址一致。")
|
||||
if args.api:
|
||||
print(f" Chatchat API Server: {api_address()}")
|
||||
if args.webui:
|
||||
print(f" Chatchat WEBUI Server: {webui_address()}")
|
||||
print("=" * 30 + "Langchain-Chatchat Configuration" + "=" * 30)
|
||||
print("\n\n")
|
||||
dump_server_info(True)
|
||||
break
|
||||
else:
|
||||
queue.put(no)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,204 @@
|
|||
from doctest import testfile
|
||||
import requests
|
||||
import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
root_path = Path(__file__).parent.parent.parent
|
||||
sys.path.append(str(root_path))
|
||||
from configs.server_config import api_address
|
||||
from configs.model_config import VECTOR_SEARCH_TOP_K
|
||||
from server.knowledge_base.utils import get_kb_path
|
||||
|
||||
from pprint import pprint
|
||||
|
||||
|
||||
api_base_url = api_address()
|
||||
|
||||
kb = "kb_for_api_test"
|
||||
test_files = {
|
||||
"README.MD": str(root_path / "README.MD"),
|
||||
"FAQ.MD": str(root_path / "docs" / "FAQ.MD")
|
||||
}
|
||||
|
||||
|
||||
def test_delete_kb_before(api="/knowledge_base/delete_knowledge_base"):
|
||||
if not Path(get_kb_path(kb)).exists():
|
||||
return
|
||||
|
||||
url = api_base_url + api
|
||||
print("\n测试知识库存在,需要删除")
|
||||
r = requests.post(url, json=kb)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
|
||||
# check kb not exists anymore
|
||||
url = api_base_url + "/knowledge_base/list_knowledge_bases"
|
||||
print("\n获取知识库列表:")
|
||||
r = requests.get(url)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert isinstance(data["data"], list) and len(data["data"]) > 0
|
||||
assert kb not in data["data"]
|
||||
|
||||
|
||||
def test_create_kb(api="/knowledge_base/create_knowledge_base"):
|
||||
url = api_base_url + api
|
||||
|
||||
print(f"\n尝试用空名称创建知识库:")
|
||||
r = requests.post(url, json={"knowledge_base_name": " "})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 404
|
||||
assert data["msg"] == "知识库名称不能为空,请重新填写知识库名称"
|
||||
|
||||
print(f"\n创建新知识库: {kb}")
|
||||
r = requests.post(url, json={"knowledge_base_name": kb})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert data["msg"] == f"已新增知识库 {kb}"
|
||||
|
||||
print(f"\n尝试创建同名知识库: {kb}")
|
||||
r = requests.post(url, json={"knowledge_base_name": kb})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 404
|
||||
assert data["msg"] == f"已存在同名知识库 {kb}"
|
||||
|
||||
|
||||
def test_list_kbs(api="/knowledge_base/list_knowledge_bases"):
|
||||
url = api_base_url + api
|
||||
print("\n获取知识库列表:")
|
||||
r = requests.get(url)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert isinstance(data["data"], list) and len(data["data"]) > 0
|
||||
assert kb in data["data"]
|
||||
|
||||
|
||||
def test_upload_doc(api="/knowledge_base/upload_doc"):
|
||||
url = api_base_url + api
|
||||
for name, path in test_files.items():
|
||||
print(f"\n上传知识文件: {name}")
|
||||
data = {"knowledge_base_name": kb, "override": True}
|
||||
files = {"file": (name, open(path, "rb"))}
|
||||
r = requests.post(url, data=data, files=files)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert data["msg"] == f"成功上传文件 {name}"
|
||||
|
||||
for name, path in test_files.items():
|
||||
print(f"\n尝试重新上传知识文件: {name}, 不覆盖")
|
||||
data = {"knowledge_base_name": kb, "override": False}
|
||||
files = {"file": (name, open(path, "rb"))}
|
||||
r = requests.post(url, data=data, files=files)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 404
|
||||
assert data["msg"] == f"文件 {name} 已存在。"
|
||||
|
||||
for name, path in test_files.items():
|
||||
print(f"\n尝试重新上传知识文件: {name}, 覆盖")
|
||||
data = {"knowledge_base_name": kb, "override": True}
|
||||
files = {"file": (name, open(path, "rb"))}
|
||||
r = requests.post(url, data=data, files=files)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert data["msg"] == f"成功上传文件 {name}"
|
||||
|
||||
|
||||
def test_list_docs(api="/knowledge_base/list_docs"):
|
||||
url = api_base_url + api
|
||||
print("\n获取知识库中文件列表:")
|
||||
r = requests.get(url, params={"knowledge_base_name": kb})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert isinstance(data["data"], list)
|
||||
for name in test_files:
|
||||
assert name in data["data"]
|
||||
|
||||
|
||||
def test_search_docs(api="/knowledge_base/search_docs"):
|
||||
url = api_base_url + api
|
||||
query = "介绍一下langchain-chatchat项目"
|
||||
print("\n检索知识库:")
|
||||
print(query)
|
||||
r = requests.post(url, json={"knowledge_base_name": kb, "query": query})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert isinstance(data, list) and len(data) == VECTOR_SEARCH_TOP_K
|
||||
|
||||
|
||||
def test_update_doc(api="/knowledge_base/update_doc"):
|
||||
url = api_base_url + api
|
||||
for name, path in test_files.items():
|
||||
print(f"\n更新知识文件: {name}")
|
||||
r = requests.post(url, json={"knowledge_base_name": kb, "file_name": name})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert data["msg"] == f"成功更新文件 {name}"
|
||||
|
||||
|
||||
def test_delete_doc(api="/knowledge_base/delete_doc"):
|
||||
url = api_base_url + api
|
||||
for name, path in test_files.items():
|
||||
print(f"\n删除知识文件: {name}")
|
||||
r = requests.post(url, json={"knowledge_base_name": kb, "doc_name": name})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert data["msg"] == f"{name} 文件删除成功"
|
||||
|
||||
url = api_base_url + "/knowledge_base/search_docs"
|
||||
query = "介绍一下langchain-chatchat项目"
|
||||
print("\n尝试检索删除后的检索知识库:")
|
||||
print(query)
|
||||
r = requests.post(url, json={"knowledge_base_name": kb, "query": query})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert isinstance(data, list) and len(data) == 0
|
||||
|
||||
|
||||
def test_recreate_vs(api="/knowledge_base/recreate_vector_store"):
|
||||
url = api_base_url + api
|
||||
print("\n重建知识库:")
|
||||
r = requests.post(url, json={"knowledge_base_name": kb}, stream=True)
|
||||
for chunk in r.iter_content(None):
|
||||
data = json.loads(chunk)
|
||||
assert isinstance(data, dict)
|
||||
assert data["code"] == 200
|
||||
print(data["msg"])
|
||||
|
||||
url = api_base_url + "/knowledge_base/search_docs"
|
||||
query = "本项目支持哪些文件格式?"
|
||||
print("\n尝试检索重建后的检索知识库:")
|
||||
print(query)
|
||||
r = requests.post(url, json={"knowledge_base_name": kb, "query": query})
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert isinstance(data, list) and len(data) == VECTOR_SEARCH_TOP_K
|
||||
|
||||
|
||||
def test_delete_kb_after(api="/knowledge_base/delete_knowledge_base"):
|
||||
url = api_base_url + api
|
||||
print("\n删除知识库")
|
||||
r = requests.post(url, json=kb)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
|
||||
# check kb not exists anymore
|
||||
url = api_base_url + "/knowledge_base/list_knowledge_bases"
|
||||
print("\n获取知识库列表:")
|
||||
r = requests.get(url)
|
||||
data = r.json()
|
||||
pprint(data)
|
||||
assert data["code"] == 200
|
||||
assert isinstance(data["data"], list) and len(data["data"]) > 0
|
||||
assert kb not in data["data"]
|
||||
|
|
@ -0,0 +1,108 @@
|
|||
import requests
|
||||
import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
sys.path.append(str(Path(__file__).parent.parent.parent))
|
||||
from configs.server_config import API_SERVER, api_address
|
||||
|
||||
from pprint import pprint
|
||||
|
||||
|
||||
api_base_url = api_address()
|
||||
|
||||
|
||||
def dump_input(d, title):
|
||||
print("\n")
|
||||
print("=" * 30 + title + " input " + "="*30)
|
||||
pprint(d)
|
||||
|
||||
|
||||
def dump_output(r, title):
|
||||
print("\n")
|
||||
print("=" * 30 + title + " output" + "="*30)
|
||||
for line in r.iter_content(None, decode_unicode=True):
|
||||
print(line, end="", flush=True)
|
||||
|
||||
|
||||
headers = {
|
||||
'accept': 'application/json',
|
||||
'Content-Type': 'application/json',
|
||||
}
|
||||
|
||||
data = {
|
||||
"query": "请用100字左右的文字介绍自己",
|
||||
"history": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你好"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "你好,我是 ChatGLM"
|
||||
}
|
||||
],
|
||||
"stream": True
|
||||
}
|
||||
|
||||
|
||||
|
||||
def test_chat_fastchat(api="/chat/fastchat"):
|
||||
url = f"{api_base_url}{api}"
|
||||
data2 = {
|
||||
"stream": True,
|
||||
"messages": data["history"] + [{"role": "user", "content": "推荐一部科幻电影"}]
|
||||
}
|
||||
dump_input(data2, api)
|
||||
response = requests.post(url, headers=headers, json=data2, stream=True)
|
||||
dump_output(response, api)
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
def test_chat_chat(api="/chat/chat"):
|
||||
url = f"{api_base_url}{api}"
|
||||
dump_input(data, api)
|
||||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||||
dump_output(response, api)
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
def test_knowledge_chat(api="/chat/knowledge_base_chat"):
|
||||
url = f"{api_base_url}{api}"
|
||||
data = {
|
||||
"query": "如何提问以获得高质量答案",
|
||||
"knowledge_base_name": "samples",
|
||||
"history": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "你好"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "你好,我是 ChatGLM"
|
||||
}
|
||||
],
|
||||
"stream": True
|
||||
}
|
||||
dump_input(data, api)
|
||||
response = requests.post(url, headers=headers, json=data, stream=True)
|
||||
print("\n")
|
||||
print("=" * 30 + api + " output" + "="*30)
|
||||
first = True
|
||||
for line in response.iter_content(None, decode_unicode=True):
|
||||
data = json.loads(line)
|
||||
if first:
|
||||
for doc in data["docs"]:
|
||||
print(doc)
|
||||
first = False
|
||||
print(data["answer"], end="", flush=True)
|
||||
assert response.status_code == 200
|
||||
|
||||
|
||||
def test_search_engine_chat(api="/chat/search_engine_chat"):
|
||||
url = f"{api_base_url}{api}"
|
||||
for se in ["bing", "duckduckgo"]:
|
||||
dump_input(data, api)
|
||||
response = requests.post(url, json=data, stream=True)
|
||||
dump_output(response, api)
|
||||
assert response.status_code == 200
|
||||
|
|
@ -118,7 +118,7 @@ def knowledge_base_page(api: ApiRequest):
|
|||
vector_store_type=vs_type,
|
||||
embed_model=embed_model,
|
||||
)
|
||||
st.toast(ret["msg"])
|
||||
st.toast(ret.get("msg", " "))
|
||||
st.session_state["selected_kb_name"] = kb_name
|
||||
st.experimental_rerun()
|
||||
|
||||
|
|
@ -138,12 +138,14 @@ def knowledge_base_page(api: ApiRequest):
|
|||
# use_container_width=True,
|
||||
disabled=len(files) == 0,
|
||||
):
|
||||
for f in files:
|
||||
ret = api.upload_kb_doc(f, kb)
|
||||
if ret["code"] == 200:
|
||||
st.toast(ret["msg"], icon="✔")
|
||||
else:
|
||||
st.toast(ret["msg"], icon="✖")
|
||||
data = [{"file": f, "knowledge_base_name": kb, "not_refresh_vs_cache": True} for f in files]
|
||||
data[-1]["not_refresh_vs_cache"]=False
|
||||
for k in data:
|
||||
ret = api.upload_kb_doc(**k)
|
||||
if msg := check_success_msg(ret):
|
||||
st.toast(msg, icon="✔")
|
||||
elif msg := check_error_msg(ret):
|
||||
st.toast(msg, icon="✖")
|
||||
st.session_state.files = []
|
||||
|
||||
st.divider()
|
||||
|
|
@ -235,7 +237,7 @@ def knowledge_base_page(api: ApiRequest):
|
|||
):
|
||||
for row in selected_rows:
|
||||
ret = api.delete_kb_doc(kb, row["file_name"], True)
|
||||
st.toast(ret["msg"])
|
||||
st.toast(ret.get("msg", " "))
|
||||
st.experimental_rerun()
|
||||
|
||||
st.divider()
|
||||
|
|
@ -249,12 +251,14 @@ def knowledge_base_page(api: ApiRequest):
|
|||
use_container_width=True,
|
||||
type="primary",
|
||||
):
|
||||
with st.spinner("向量库重构中"):
|
||||
with st.spinner("向量库重构中,请耐心等待,勿刷新或关闭页面。"):
|
||||
empty = st.empty()
|
||||
empty.progress(0.0, "")
|
||||
for d in api.recreate_vector_store(kb):
|
||||
print(d)
|
||||
empty.progress(d["finished"] / d["total"], f"正在处理: {d['doc']}")
|
||||
if msg := check_error_msg(d):
|
||||
st.toast(msg)
|
||||
else:
|
||||
empty.progress(d["finished"] / d["total"], f"正在处理: {d['doc']}")
|
||||
st.experimental_rerun()
|
||||
|
||||
if cols[2].button(
|
||||
|
|
@ -262,6 +266,6 @@ def knowledge_base_page(api: ApiRequest):
|
|||
use_container_width=True,
|
||||
):
|
||||
ret = api.delete_knowledge_base(kb)
|
||||
st.toast(ret["msg"])
|
||||
st.toast(ret.get("msg", " "))
|
||||
time.sleep(1)
|
||||
st.experimental_rerun()
|
||||
|
|
|
|||
|
|
@ -229,18 +229,18 @@ class ApiRequest:
|
|||
elif chunk.strip():
|
||||
yield chunk
|
||||
except httpx.ConnectError as e:
|
||||
msg = f"无法连接API服务器,请确认已执行python server\\api.py"
|
||||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。"
|
||||
logger.error(msg)
|
||||
logger.error(e)
|
||||
yield {"code": 500, "errorMsg": msg}
|
||||
yield {"code": 500, "msg": msg}
|
||||
except httpx.ReadTimeout as e:
|
||||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见RADME '5. 启动 API 服务或 Web UI')"
|
||||
logger.error(msg)
|
||||
logger.error(e)
|
||||
yield {"code": 500, "errorMsg": msg}
|
||||
yield {"code": 500, "msg": msg}
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
yield {"code": 500, "errorMsg": str(e)}
|
||||
yield {"code": 500, "msg": str(e)}
|
||||
|
||||
# 对话相关操作
|
||||
|
||||
|
|
@ -394,7 +394,7 @@ class ApiRequest:
|
|||
return response.json()
|
||||
except Exception as e:
|
||||
logger.error(e)
|
||||
return {"code": 500, "errorMsg": errorMsg or str(e)}
|
||||
return {"code": 500, "msg": errorMsg or str(e)}
|
||||
|
||||
def list_knowledge_bases(
|
||||
self,
|
||||
|
|
@ -496,6 +496,7 @@ class ApiRequest:
|
|||
knowledge_base_name: str,
|
||||
filename: str = None,
|
||||
override: bool = False,
|
||||
not_refresh_vs_cache: bool = False,
|
||||
no_remote_api: bool = None,
|
||||
):
|
||||
'''
|
||||
|
|
@ -529,7 +530,11 @@ class ApiRequest:
|
|||
else:
|
||||
response = self.post(
|
||||
"/knowledge_base/upload_doc",
|
||||
data={"knowledge_base_name": knowledge_base_name, "override": override},
|
||||
data={
|
||||
"knowledge_base_name": knowledge_base_name,
|
||||
"override": override,
|
||||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||||
},
|
||||
files={"file": (filename, file)},
|
||||
)
|
||||
return self._check_httpx_json_response(response)
|
||||
|
|
@ -539,6 +544,7 @@ class ApiRequest:
|
|||
knowledge_base_name: str,
|
||||
doc_name: str,
|
||||
delete_content: bool = False,
|
||||
not_refresh_vs_cache: bool = False,
|
||||
no_remote_api: bool = None,
|
||||
):
|
||||
'''
|
||||
|
|
@ -551,6 +557,7 @@ class ApiRequest:
|
|||
"knowledge_base_name": knowledge_base_name,
|
||||
"doc_name": doc_name,
|
||||
"delete_content": delete_content,
|
||||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||||
}
|
||||
|
||||
if no_remote_api:
|
||||
|
|
@ -568,6 +575,7 @@ class ApiRequest:
|
|||
self,
|
||||
knowledge_base_name: str,
|
||||
file_name: str,
|
||||
not_refresh_vs_cache: bool = False,
|
||||
no_remote_api: bool = None,
|
||||
):
|
||||
'''
|
||||
|
|
@ -583,7 +591,11 @@ class ApiRequest:
|
|||
else:
|
||||
response = self.post(
|
||||
"/knowledge_base/update_doc",
|
||||
json={"knowledge_base_name": knowledge_base_name, "file_name": file_name},
|
||||
json={
|
||||
"knowledge_base_name": knowledge_base_name,
|
||||
"file_name": file_name,
|
||||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||||
},
|
||||
)
|
||||
return self._check_httpx_json_response(response)
|
||||
|
||||
|
|
@ -617,7 +629,7 @@ class ApiRequest:
|
|||
"/knowledge_base/recreate_vector_store",
|
||||
json=data,
|
||||
stream=True,
|
||||
timeout=False,
|
||||
timeout=None,
|
||||
)
|
||||
return self._httpx_stream2generator(response, as_json=True)
|
||||
|
||||
|
|
@ -626,7 +638,22 @@ def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str:
|
|||
'''
|
||||
return error message if error occured when requests API
|
||||
'''
|
||||
if isinstance(data, dict) and key in data:
|
||||
if isinstance(data, dict):
|
||||
if key in data:
|
||||
return data[key]
|
||||
if "code" in data and data["code"] != 200:
|
||||
return data["msg"]
|
||||
return ""
|
||||
|
||||
|
||||
def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str:
|
||||
'''
|
||||
return error message if error occured when requests API
|
||||
'''
|
||||
if (isinstance(data, dict)
|
||||
and key in data
|
||||
and "code" in data
|
||||
and data["code"] == 200):
|
||||
return data[key]
|
||||
return ""
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue